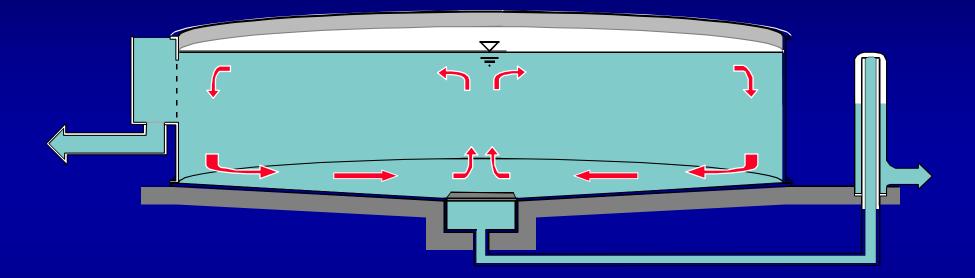
Sidewall-Box Airlift Pump Provides Large Flows for Aeration, CO<sub>2</sub> Stripping, and Water Rotation in Dual-Drain Circular Tanks

Steven Summerfelt & Dane Schiro Freshwater Institute, Shepherdstown, WV

> Timothy Pfeiffer USDA ARS, Fort Pierce, FL

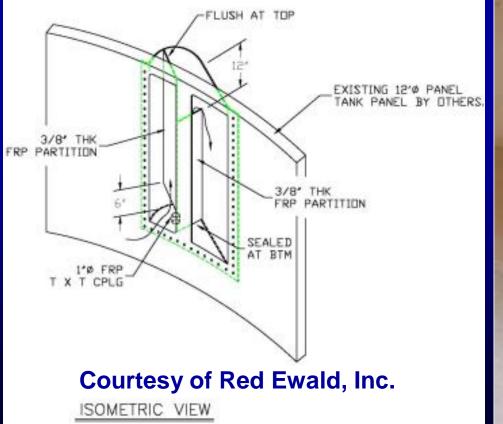
# Objectives


- Develop a simplified partial water reuse system that relies on a sidewall-box airlift pump
  - reduce variable and fixed costs
  - ✓ simple system
  - ✓ does not compromise water quality

#### Introduction – Aeration Options

- Diffused aeration in circular tanks interferes with:
  - hydrodynamics of water rotation
  - speed and efficiency of solids fractionation to the bottom-center drain




# Circular Tanks: Radial Flow



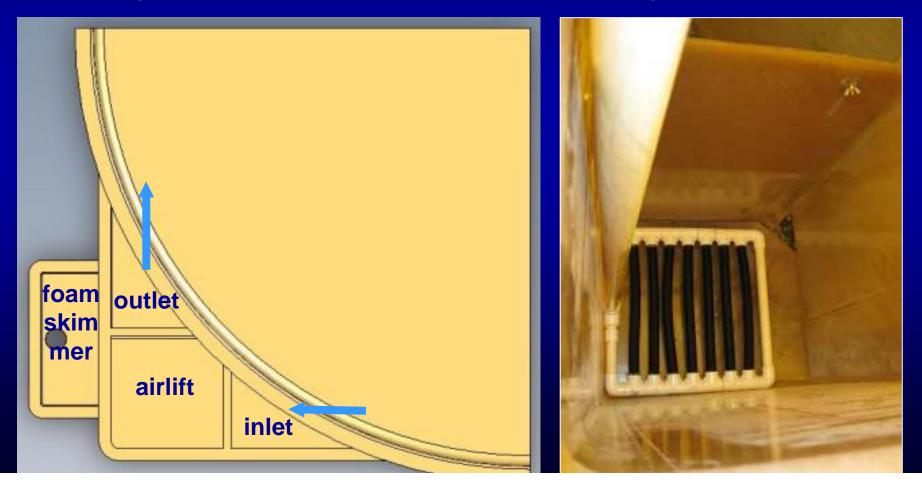
Primary rotating flow creates secondary radial flow:

- ✓ transports settleable solids to bottom center
- ✓ creates self-cleaning tank
- ✓ aeration breaks apart fecal matter and interferes w/ hydrodynamics

1<sup>st</sup> Version used a 30 cm (12 inch) wide weir wall
 180 cm<sup>2</sup> (0.196 ft<sup>2</sup>) plan area in airlift chamber
 Three snap-cap diffusers (Aquatic-Eco Systems)

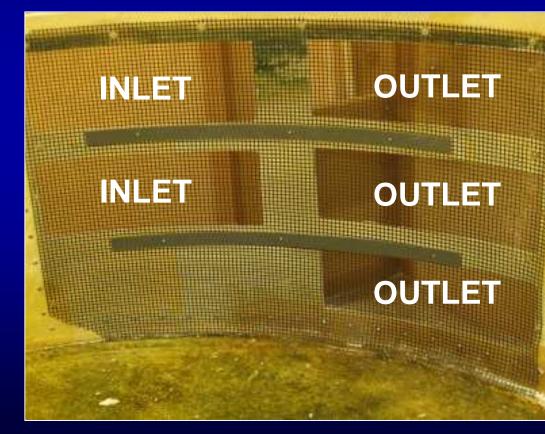


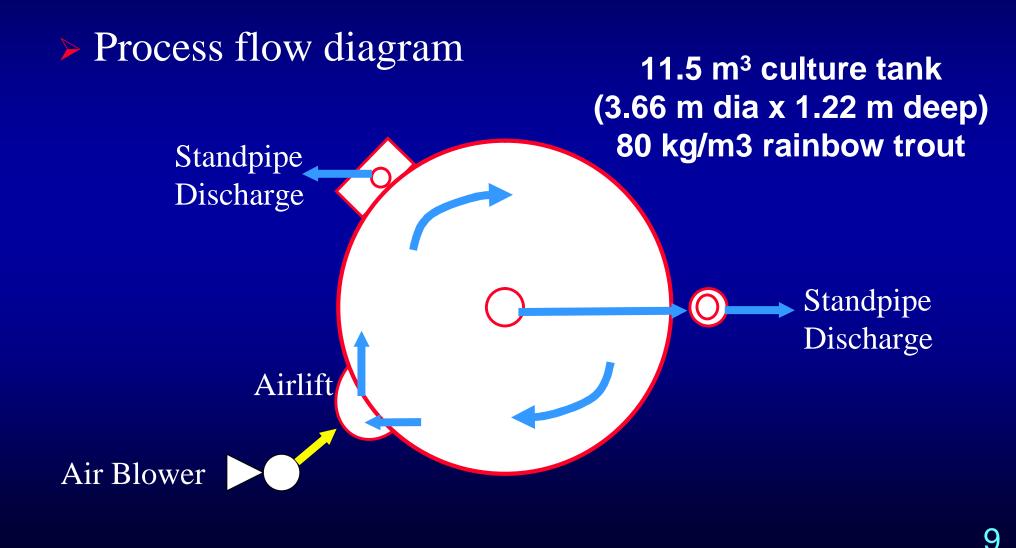



#### > 1<sup>st</sup> Version used a 30 cm (12 inch) wide weir wall



6


> 2<sup>nd</sup> Version used a 46 cm (18 inch) wide weir wall
 2060 cm<sup>2</sup> (2.25 ft<sup>2</sup>) plan area = 10-times more airlift area


 diffuser grid w/ 1.2 m of Aero-Tube Tubing (Colorite Plastics)



# Methods: Sidewall Box Airlift > 2<sup>nd</sup> Version used a 46 cm (18 inch) wide weir wall

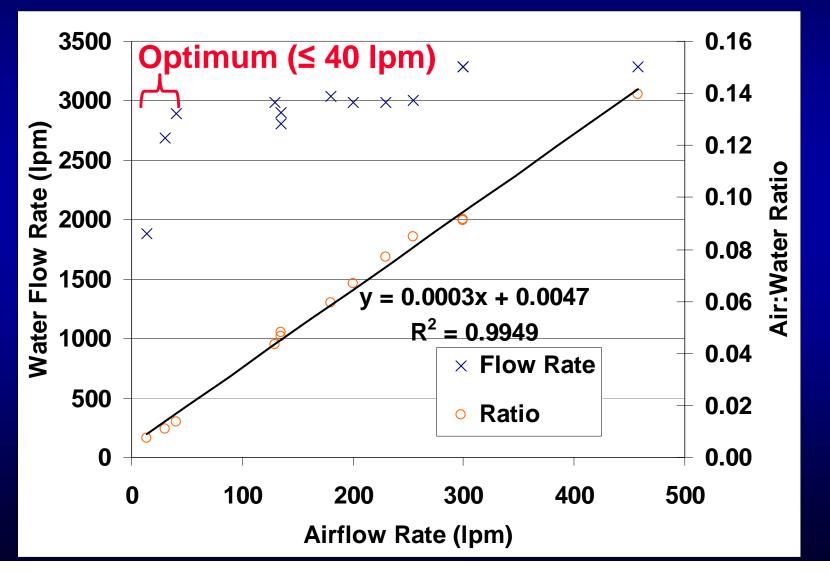






#### Methods: Regenerative Blowers

1<sup>st</sup> Airlift: 0.25 KW (1/3-HP) blower
 Model S21, Aquatic-Eco Systems, Boca Raton, Florida
 2<sup>nd</sup> Airlift: 0.38 KW (1/2-HP) blower
 Model S31, Aquatic-Eco Systems


#### Water Flow, Lift, and Upwelling Velocity in Airlift, plus Tank HRT

|                                                              | 1 <sup>st</sup> Version<br>Airlift<br>(SNAP-CAPs) | 2 <sup>nd</sup> Version<br>Airlift<br>(AERO-TUBE) |
|--------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Water Lift, cm                                               | 5.1 (2 inch)                                      | <b>3.8</b> (1.5 inch)                             |
| Water Flow Rate, m <sup>3</sup> /min                         | <b>1.7</b> (440 gpm)                              | <b>1.9</b> (500 gpm)                              |
| Water Flow per unit energy input, m <sup>3</sup> /min per kW | 4.4                                               | 3.0                                               |
| Tank HRT, min                                                | 7                                                 | 6                                                 |
| Upwelling Velocity in Airlift,<br>m/s                        | <b>1.52</b> (5.0 ft/s)                            | <b>0.15</b> (0.5 ft/s)                            |

Air Flow & Pressure, Pressure Drop through Diffusers, Air:Water (vol:vol), & Line Power Req.

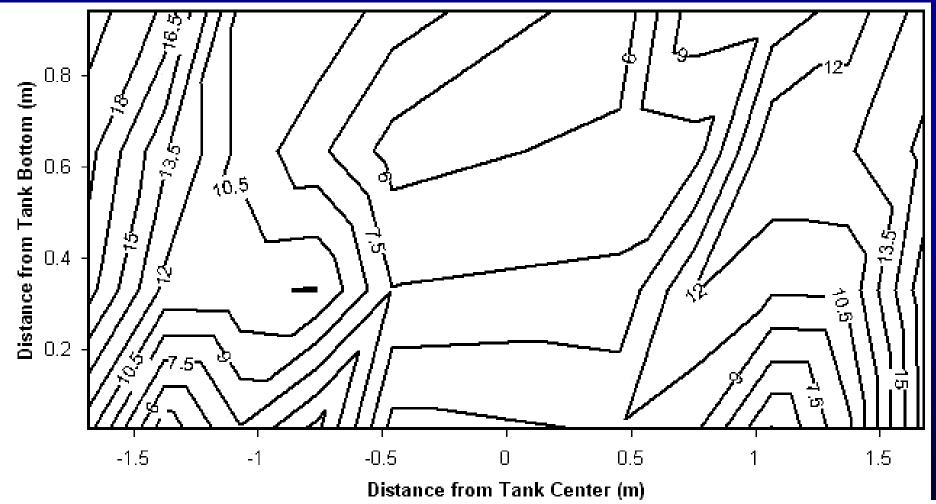
|                                                       | 1 <sup>st</sup> Version<br>Airlift<br>(SNAP-CAPs) | 2 <sup>nd</sup> Version<br>Airlift<br>(AERO-TUBE) |
|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Air Flow, standard L/min                              | 96                                                | < 40                                              |
| Air Pressure, m H2O head                              | 1.01                                              | 1.25                                              |
| Air Pressure Drop through<br>Piping & Diffuser, m H2O | 0.15                                              | 0.315                                             |
| Air:Water, vol:vol                                    | 0.06                                              | < 0.02                                            |
| Line Power Req., kW                                   | 0.39                                              | 0.64                                              |

2<sup>nd</sup> Version Airlift (Aero-Tube diffusers)



- 2<sup>nd</sup> Version Airlift (Aero-Tube diffusers)
- Water flow was maximized (2900 L/min) with the least air input at:
  - ✓ Air flow rate  $\leq$  40 L/min (1.4 cfm)
  - ✓ Air:Water  $\leq$  0.015 (vol:vol)
  - ✓ Airlift upwelling water velocity  $\leq 0.23$  m/s (0.76 ft/s)
  - Water Flow per unit energy input
    - ¬ 3.0 m³/min per kW line power
    - ↗ Note this may be much lower with larger blower...

Change in dissolved O<sub>2</sub> & CO<sub>2</sub> across airlift @ tank dissolved O<sub>2</sub> of 7.0 mg/L and @ 13°C


|                                          | 1 <sup>st</sup> Version<br>Airlift<br>(SNAP-CAPS) | 2 <sup>nd</sup> Version<br>Airlift<br>(AERO-TUBE) |
|------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| O <sub>2</sub> increase each pass, mg/L  | 0.45                                              | 0.99                                              |
| CO <sub>2</sub> decrease each pass, mg/L | 1.6                                               | 2.0                                               |

Estimated Daily O<sub>2</sub> Supply, Aerator Efficiency, Carrying Capacity, & %BW/day Feed supported by airlift.

|                                                               | 1 <sup>st</sup> Version<br>Airlift | 2 <sup>nd</sup> Version<br>Airlift |
|---------------------------------------------------------------|------------------------------------|------------------------------------|
| Daily O <sub>2</sub> supplied*, kg/d                          | 1.1                                | 2.7                                |
| Aerator Efficiency*, kg O2/kW-hr                              | 0.12                               | 0.18                               |
| Carrying capacity of airlift*,<br>kg feed per day             | 3.0                                | 7.7                                |
| % BW/day that could be fed @<br>80 kg/m <sup>3</sup> density* | 0.33                               | 0.84                               |

\*tests conducted with dissolved O<sub>2</sub> inlet of 7.0 mg/L @ 13°C

High water flows through airlift adds impulse force to rotate tank



17

# **Circular Tanks: Optimum Velocity**

# Optimum swimming velocity = (0.5 to 2.0) x (fish body length)/second



Velocities in a 'donut-shaped' region about tank center are reduced:

✓ allows fish to select a variety of swimming speeds

#### **Results: TSS Concentration**

TSS concentrations in tank averaged 1.0 mg/L
 do not appear to be elevated by operation of airlift

### Discussion

Comparison of fixed and variable costs of the sidewall airlift box versus a 1-HP pump (380 L/min) to aerator & oxygenator system

 $\checkmark$  each to supply 2.7 kg O<sub>2</sub>/day

|                                                                                                           | 1-HP Pump to<br>an Aerator &<br>Oxygenator | 2 <sup>nd</sup> Version<br>Airlift<br>(AERO-TUBE) |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|
| Variable Costs<br>kW-hr/yr<br>\$Elect/yr (@\$0.06/kW-hr)<br>\$02 feed gas/yr<br>(assuming 1.35 kg 02/day) | 11,800<br>\$708<br>\$108                   | 5,600<br>\$336<br>\$0                             |
| Fixed Costs, \$                                                                                           | \$8000                                     | \$2200                                            |
| Footprint                                                                                                 | larger                                     | smaller 20                                        |

### Conclusions

Sidewall box airlift creates simple partial-reuse system

Optimum conditions in test system may be:

- Aeration via grid of diffuser hose
- ightarrow Air:Water ≤ 0.015 (vol:vol)
- ↗ Airlift upwelling water velocity  $\leq 0.23$  m/s (0.76 ft/s)
- Huge flows are created with modest energy
  - ∧ 3.0 m<sup>3</sup>/min per kW line power with diffuser hose
  - ↗ Note this may be much lower with larger blower...

#### Conclusions

Sidewall box airlift creates simple partial-reuse system
 Airlift rapidly exchanges the culture tank volume (6 min HRT)
 Adds 1 mg/L dissolved O<sub>2</sub> and strips 2 mg/L CO<sub>2</sub> each pass
 Rapid tank flushing adds impulse force to rotate tank
 Tank operates on dual-drain principle & solids fractionate to bottom center drain – MAINTAINS WATER QUALITY

#### Conclusions

Sidewall box airlift creates simple partial-reuse system
 Avoids more expensive & complex

 centrifugal pumps,
 large dia pipe runs,
 stripping columns, &
 oxygenation processes

# Acknowledgements

- All research was supported by the Agriculture Research Service of the United States Department of Agriculture, under Agreement No. 59-1930-5-510.
- Opinions, conclusions, and recommendations are of the authors and do not necessarily reflect the view of the USDA.
- All experimental protocols involving live animals were in compliance with Animal Welfare Act (9CFR) and have been approved by the Freshwater Institute Animal Care and Use Committee.