What is Biomass fuel
- Direct use – wood, grains
- Bulky – straw, prairie grass, hay, sawdust
- Density for use – pellet / cube
- By-products –
 - Cherry pits, sunflower hulls, nut hulls, rice hulls
- Processed fuels – Oils or sugars

Biomass Fuels
- A fuel derived from plant material
 - Wood (cord, chips, pellets)
 - Grains (corn, rye, wheat, …)
 - Cherry pits, sunflower hulls
 - Prairie grass (switchgrass, miscanthus)
 - Crop fodder (corn stalks)
 - Straw (wheat, oat, barley)
 - Oils

Material Characterization
- Unit of measure – Cord, tons, pounds
- Moisture
 - Reduces net energy content
 - Water must be evaporated before burning will initiate
- Energy content – Btu / unit of measure
 - Low Heating Value (LHV) – net energy after moisture is evaporated
 - High Heating Value (HHV) – net energy if moisture is condensed after combustion
- Size and shape
- Ash content (pellets)
- Chemical contents: Chloride

Types of Wood Fuels
- Energy content varies with H2O, density and ash
- Cord wood
- Green mill residue
 - Hogged bark & sawdust
 - High moisture (>20%)
 - Store outside in piles
- Dry mill residue
 - Low moisture (< 10%)
 - Sawdust, trimmings, wood from wood products companies
- Wood Chips
 - Whole tree chips, round wood chips, clean chips
 - Typically high moisture (~50%)
Direct Use - Wood

- **Cord wood / logs**
 - Unit of measure – Cord
 - 4 ft x 4 ft x 8 ft stack of wood – 128 sq ft
 - Moisture – 50% as harvested
 - Air Dried: ~ 20% (1 – 2 years)
- **Energy content – varies with tree species**
 - Average – 22,300,000 Btu / cord @ 20% moisture
 - Range – 14,700,000 to 30,700,000 Btu / cord
 - Different species vary in density (lbs / cord)
 - Basswood – 2100 lb / cord; Hickory 4160 lb / cord
 - All wood about 7000 Btu / lb. @ 20% moisture
- **Moisture**: 50% as harvested
- **Air Dried**: ~ 20% (1 – 2 years)
- **Energy content**: varies with tree species
- **Average**: 22,300,000 Btu / cord @ 20% moisture
- **Range**: 14,700,000 to 30,700,000 Btu / cord
- **Different species vary in density** (lbs / cord)
 - Basswood – 2100 lb / cord; Hickory 4160 lb / cord
- **All wood about 7000 Btu / lb. @ 20% moisture**
- **“Low cost” ???**
- **Labor intensive**
 - Handle 3 to 6 times
- **Harvesting**
 - Cut, transport, split, pile/stack
- **Air dry**: Minimum 1 summer / 2 better
- **Plan requirements**: 1-2 yrs ahead
- **Refueling labor**
- **Ash disposal**
- **High emissions – new regulations**

Direct Use – Green Wood Chips

- **Local availability**
- **Low cost**
- **Moisture Content**
 - Green ~ 50% moisture
 - Lower energy content ~ 4500 Btu/lb
- **Bulk handling**
 - Augers
 - Loaders
- **Storage**
 - Outside pile
 - Bunker / covered

Direct Use - Grains

- **Corn**
 - Unit of measure – Bushels or pounds/tons
 - Bulk in bushels or 50 pound bags
 - 56 lbs per bushel @ 15.5% moisture content
 - Moisture
 - 15.5% std; also available at 12% by some retailers
 - Energy content
 - 6810 (15%) to 7130 (12%) Btu per pound
 - Advantages
 - Readily available
 - No processing
 - Disadvantages
 - Slag / Clinkers (solid ash)
 - Drying required for storage / proper combustion
 - Need wood pellets to start burning
 - Flame out at lower feed rates / higher moisture levels

Direct Use - Grains

- **Wheat**
 - Bushel – 60 lbs @ 13.5% moisture
- **Oats**
 - Bushel – 32 lbs @ 14% moisture
- **Barley**
 - Bushel – 48 lbs @ 14.5% moisture
- **Rye**
 - Bushel – 56 lbs @ 14% moisture
- **Soybeans**
 - Bushel – 60 lbs @ 13% moisture
- **Sunflowers**
 - Per 100 lbs or cwt. @ 10% moisture

Calculating Heat values

- **Corn**
 - Bone-dry – 8250 Btu per pound
 - If corn is 15% moisture then one pound of corn:
 - 0.85 pounds corn
 - 0.15 pounds water
 - Water require 1050 Btu / pound to evaporate
 - 0.85 x 8250 – (1050 x 0.15) = 6855 Btu / pound
 - There may be further losses to transfer heat to air or water in boiler or furnace.
 - Typical efficiencies = 80%
Densification

- Pellets / cubes
 - Facilitates handling
 - Reduces transportation costs
 - Use of by-products / low value materials
 - Uniform product
 - Bulk Handling – grain handling equipment
 - Dry storage needed
 - Automatic stoking
 - Low emissions / low smoke
 - Higher thermal efficiency – 80% to 90+%
 - Higher cost / energy input

Densification

- Pellets
 - 1/4” to 5/16” diameter x 1” to 1-1/2” long
 - Wood, Prairie grasses, paper
 - Use in pellet stoves/boiler
- Cube or Briquette
 - 1” x 1-1/4” cube
 - Used to replace coal
 - Industrial boilers

Wood Pellets

- Material – Sawdust, wood residue
- Unit of measure – Tons or pounds
- Bulk in tons or 40-50 pound bags
- Moisture
 - 6 to 10% depending on grade
- Energy content
 - Average – 8000 Btu / lb
- Grades (Pellet Fuels Institute)
 - Utility, standard, premium, super premium
 - Difference is mainly ash content 6%, 2%, 1%, 0.5%
- Uniform product

Biomass Pellets

- Materials
 - Prairie grass mixes (Switchgrass, Miscanthus, hay)
 - Straw (wheat, oat, barley, rye)
 - Corn fodder (stalks & cob)
 - Nut hulls, sunflower hulls
 - Wood residue
- Unit of measure
 - Bulk in tons or 50 pound bags
- Moisture
 - 8-11% typical
- Energy content
 - 7200 to 8000 Btu per pound
- Higher energy contents typically include some wood residue
- Chloride content – Often higher than PFI standard of 300 ppm max
- High temperature corrosive agent – boiler corrosion over time

Biomass Fuels

- Corn
- Wood Pellets
- Prairie Grass Pellets
- Small Grains (Rye & Vetch)

What is a boiler versus a furnace?

- Boiler heats a fluid (water, glycol/water solution, steam)
 - Fluid can be pumped to the location where it is to be used.
- Furnace heats air
 - Air blown through ducts to location needed

Boilers
- One boiler can heat multiple greenhouses
- One system for under-bench/floor heating and supplemental water/air heat exchanger
- Can be located outside the greenhouse
 - Maximize growing space
- Boilers can be in central location
 - One fuel storage system
- Store heat in tank of heat transfer fluid

Furnaces
- Heats air directly
 - Reduces heat exchange losses
- Located in or adjacent to greenhouse
 - Takes up growing space?
- No leaks to worry about
- May need multiple furnaces per greenhouse
 - Multiple fuel storage bins or labor to fill furnace hoppers

Outdoor Wood Boiler Emissions
- Outdoor Wood-Fired Boilers
 - Fuel: Wood, scrape materials, pallets
 - “Cheaper” Fuel? – What is the true cost?
 - Labor / equipment to collect/harvest fuel
 - Labor to re-fuel
 - Disposal of Ash
 - High emissions rate / Smoke
 - Reduce with firebox management
 - Low Efficiency
 - pre-2008 Efficiency range: 20 to 50%
 - 2008 EPA Standards for outdoor boilers
 - Great for use with floor heating
 - Can use with Air Exchanger
 - Fuel with scrap materials?
 - Increasing regulation due to smoke emissions

- EPA Qualified Outdoor Boilers
 - 90% lower emissions
 - Low emissions = higher efficiency
 - Average efficiency of qualifying boilers ~ 70%
 - Many states are restricting sales to EPA qualifying models
 - White tag / Orange tag
 - EPA information
 - www.epa.gov/woodheaters/
 - List of qualifying outdoor wood stoves
 - www.epa.gov/owhh/models.htm

Outdoor Wood Boiler Emissions
- EPA Qualified Outdoor Boilers
 - 90% lower emissions
 - Low emissions = higher efficiency
 - Average efficiency of qualifying boilers ~ 70%
 - Many states are restricting sales to EPA qualifying models
 - White tag / Orange tag
 - EPA information
 - www.epa.gov/woodheaters/
 - List of qualifying outdoor wood stoves
 - www.epa.gov/owhh/models.htm

Pellet Boiler
- Pellet Supply Bin
- Ash Bin Wagon
- Boiler Controls
- Feed Auger
- Boiler
- Ash Auger
Pellet/corn furnaces
Keep your old system for backup and COLD nights!

500,000 Btu Pellet / corn furnace
Credit: Vern Grubinger, University of Vermont

Pellet Boilers / Furnace Advantages

- Fuel homogenous
- Variety of fuel pellet sources
 - Wood
 - Paper
 - Biomass
- Accurately adjust burn rate
- Feed auger speed
- Low emissions
- High efficiency
 - 80% typ., up to 90+% efficiency
- Low labor – automatic stoking and ash removal

How is the heat distributed?

- Furnace – Ducts and fans
- Poly bags – may not be suitable depending on outlet temperature.
- Boiler
 - Water to air heat exchanger
 - Bench-top or under-bench or floor heating
 - Develop a micro climate
 - Warm roots increases growth
 - May still need water to air heat exchangers for cold spells.

Water to air heat exchanger
Credit: Focus on Energy

Source: www.thermpex.com

Poly bags – may not be suitable depending on outlet temperature.
Bench heating system

Supply and Return piping

Small heating tubes run in loops on growing bench

Supply and Return piping

Supply and return piping for the bench heating system.

3,000 gallon tank stores heat in water, which allows furnace to run hot

3,000 gallon tank stores heat in water, allowing the furnace to run hot.

Wood Chip Boiler

- Higher capital investment
- Higher maintenance
- Many moving parts
- Suited for industrial applications
- Uses low cost product
- Labor to re-fill charge hoppers required daily
- Wood chips – 25 to 50% moisture
- Need storage for tractor trailer load plus of chips
- Availability of supply??

Credit: Vern Grubinger, University of Vermont

Stand Alone Stoves

- **Advantage**
 - Low cost
 - Easy to install
 - Fast payback
 - Supplemental heating

- **Disadvantage**
 - Hopper may be too small to last all night
 - May not be thermostatically controlled – overheating
 - Heat distribution not optimal
 - Low Btu output – ~ 30,000 to 70,000 Btu/hr

Fuel Comparison

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Energy Content Btu per unit</th>
<th>Boiler Thermal Efficiency</th>
<th>Unit Cost1</th>
<th>Cost per 1,000,000 Btu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>380,000 / bu</td>
<td>70-85% (80%)</td>
<td>$5.00 / bu</td>
<td>$16.45</td>
</tr>
<tr>
<td>Wood Pellets</td>
<td>15,400,000 / ton</td>
<td>70-85% (80%)</td>
<td>$22.08/ton</td>
<td>$17.82</td>
</tr>
<tr>
<td>Outdoor Wood Boiler - typical</td>
<td>19,200,000 / full cord</td>
<td>40%</td>
<td>$200/full cord</td>
<td>$24.04</td>
</tr>
<tr>
<td>Outdoor Wood Boiler – EPA P2</td>
<td>19,200,000 / full cord</td>
<td>60%</td>
<td>$200/full cord</td>
<td>$13.94</td>
</tr>
<tr>
<td>Electricity</td>
<td>3413 / kWh</td>
<td>100%</td>
<td>$0.11/kWh</td>
<td>$32.23</td>
</tr>
<tr>
<td>Propane</td>
<td>91,500 / gallon</td>
<td>70-85% (78%)</td>
<td>$1.70/gallon</td>
<td>$23.82</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>100,000 / Therm</td>
<td>70-85% (75%)</td>
<td>$1.15 / Therm</td>
<td>$14.74</td>
</tr>
<tr>
<td>Heating Oil</td>
<td>138,000 / gallon</td>
<td>70-85% (75%)</td>
<td>$2.55/gallon</td>
<td>$24.15</td>
</tr>
</tbody>
</table>

1) Costs available in Madison, WI – October 2008. 2) Full Cord has a volume of 4 feet x 4 feet x 8 feet or 128 cubic feet 3) 1 Therm (100,000 Btu) equals approximately 1 CCF – hundred cubic feet equals 4) (XX%) Efficiency value used to calculate “Cost per 1,000,000 Btu” 5) Based on purchasing and heating wood from vendor
Sizing a heating system

- What percent of the heating do you want to replace?
 - Full Replacement
 - Some proportion of total heating
- System capacity can be smaller
 - Runs continuously to be most efficient

Case Study #1

- 30' x 96' freestanding gothic greenhouse
- Double poly glazing
- Used Feb to June – veg. & bedding plants
- Currently has two 200,000 Btu power-vented unit heaters –
 - Propane fuel - $2.00 /gallon
 - Set point temperature: 70°F day, 60°F night
- Location: Madison, WI

Options for Biomass Heating

Option A
- Residential/shop pellet stove
 - Rated output - 70,000 Btu/hr
 - Supplement heating
 - operated mainly at night
 - No Thermostat
 - Installed cost $4350
 - Stove efficiency = 80%
 - Wood pellet cost - $4.20 / 40 lb bag ($210 / ton)

Option B
- Thermostatically controlled pellet furnace
 - Heating capacity range: 10,000 to 160,000 Btu/hr
 - Furnace efficiency = 80%
 - Air ducted directly into the greenhouse above plants
 - Located at one end of greenhouse
 - Installation cost = $6030
 - Includes 14 bushel fuel bin
 - Bagged pellets assume to avoid cost of bulk storage - $4.20 / 50 lb bag

Option C
- EPA Phase 2 outdoor wood boiler
 - Average capacity (8 hour period) – 160,000 Btu/hr
 - Two water to air heat exchangers (HE) in center of greenhouse to distribute heat
 - Thermostatically controlled
 - Pump to HE turns on when greenhouse requires heat
 - Installed cost - $13,050 (boiler, all piping, heat exchanger)
 - Average boiler efficiency = 75%
 - Full Cord of Wood - $150/cord (assuming self harvested)

Option D
- Same as Option C except non EPA qualifying boiler
- Installed cost $11,634
- Estimated Efficiency = 40%
Average Night Heating Requirements by Month

<table>
<thead>
<tr>
<th>Month</th>
<th>Heating requirements Btu/day</th>
<th>Approx. average hourly heating - Btu/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>1,643,818</td>
<td>136,985</td>
</tr>
<tr>
<td>March</td>
<td>1,119,650</td>
<td>93,304</td>
</tr>
<tr>
<td>April</td>
<td>732,940</td>
<td>61,078</td>
</tr>
<tr>
<td>May</td>
<td>343,839</td>
<td>28,653</td>
</tr>
</tbody>
</table>

- Day-time heating, on-average, are fully met by solar radiation except for February
- Average February day-time heating – 12,800 Btu/hr

How much heat can Biomass provide?

- **Option A** – 100% of heating down to ~40°F
 - Estimated 50% reduction in propane use
 - Options B, C & D – 100% of heating down to ~10°F
 - Average monthly minimum Feb temperature: 14.3°F
 - Based on Average Options B, C & D can supply 100% of needs
 - Reality – estimated 20% will be supplied by propane

Summary of Biomass Heating Options

<table>
<thead>
<tr>
<th>Heating System</th>
<th>System Cost</th>
<th>Biomass Quantity</th>
<th>Biomass Energy Cost</th>
<th>Propane Cost (gallons)</th>
<th>Propane Cost</th>
<th>Total Savings</th>
<th>Simple Payback (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Residential pellet stove</td>
<td>$4,030</td>
<td>282 40# bags</td>
<td>$1,194</td>
<td>639</td>
<td>$1,178</td>
<td>$722</td>
<td>6.0</td>
</tr>
<tr>
<td>B) Pellet furnace</td>
<td>$6,030</td>
<td>355 40# bags</td>
<td>$1,491</td>
<td>318</td>
<td>$1,178</td>
<td>$1,087</td>
<td>5.7</td>
</tr>
<tr>
<td>C) Outdoor wood boiler/EPA Certified</td>
<td>$13,030</td>
<td>6 cords</td>
<td>$318</td>
<td>318</td>
<td>$636</td>
<td>$1,048</td>
<td>7.9</td>
</tr>
<tr>
<td>D) Outdoor wood boiler</td>
<td>$16,314</td>
<td>10 cords</td>
<td>$318</td>
<td>318</td>
<td>$636</td>
<td>$1,048</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Baseline: 1592 gallon propane @ $2.00/gal = $3184 / year

Case Study #2

- Gutter-connected T-shaped greenhouse
- 33,000 square feet
- Double Poly film glazing – roof and walls
- Year-round production
- Heating system – In-floor heating with unit heaters for peaking on cold nights
- Fuel: Propane @ $2.00 / gallon
- Baseline energy use – 85,581 gallons LP gas
 - $ 171,162 annual heating cost

Outdoor Wood Boiler Option

- 75% efficient Boiler
- Require 389 cords of wood
- Would increase labor requirements
- Handling and refueling
- No “Free” wood source
- Not included in analysis

Average Night Heating Requirement by Month

<table>
<thead>
<tr>
<th>Month</th>
<th>Heating Requirements Btu/day</th>
<th>Approx. average hourly heating Btu/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>8,244,853</td>
<td>702,071</td>
</tr>
<tr>
<td>October</td>
<td>15,016,403</td>
<td>1,251,534</td>
</tr>
<tr>
<td>November</td>
<td>22,012,150</td>
<td>1,834,346</td>
</tr>
<tr>
<td>December</td>
<td>29,167,064</td>
<td>2,430,589</td>
</tr>
<tr>
<td>January</td>
<td>31,150,243</td>
<td>2,595,854</td>
</tr>
<tr>
<td>February</td>
<td>28,137,214</td>
<td>2,344,809</td>
</tr>
<tr>
<td>March</td>
<td>21,901,552</td>
<td>1,825,129</td>
</tr>
<tr>
<td>April</td>
<td>15,348,874</td>
<td>1,282,406</td>
</tr>
<tr>
<td>May</td>
<td>5,862,478</td>
<td>488,540</td>
</tr>
</tbody>
</table>
Heating Demands

- Based on Madison, WI the recommended design temperature for a heating system is -20°F
- Recommend design temperatures available from National Greenhouse Manufacturers Association
 - www.ngma.com
 - Under “downloads” - Heating systems standard
- Heating requirement - 4,200,000 Btu/hr

Options for Biomass Heating

Option A
- Meet 100% of heating requirements
 - Two pellet boilers – 3.5 MBtu/hr & 1.5 MBtu/hr
 - Average efficiency = 78%
 - Use smaller boiler during spring and fall months
 - Large boilers hard to throttle for low demand
 - Estimated 5% of season would use propane heaters
 - Bins for bulk delivery of pellets
 - Installed Cost: $291,000

Option B
- Boilers sized to meet average heating requirement
 - Two pellet boilers – 2.5 MBtu/hr & 1.0 MBtu/hr
 - Use smaller boiler during spring and fall months
 - Large boilers hard to throttle for low demand
 - Estimated propane use – 20%
 - Bins for bulk delivery of pellets
 - Installed Cost: $211,000

Summary of Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Capital Cost</th>
<th>Tons of Wood Pellets</th>
<th>Wood Pellet Cost</th>
<th>Propane Cost</th>
<th>Energy Savings</th>
<th>Simple Payback years</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$291,000</td>
<td>465</td>
<td>$82,770</td>
<td>$8,558</td>
<td>$79,834</td>
<td>3.6</td>
</tr>
<tr>
<td>B</td>
<td>$211,000</td>
<td>392</td>
<td>$69,776</td>
<td>$34,232</td>
<td>$67,154</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Resources

- U of Wisconsin Extension Bulletins
 - Biomass Energy for Heating Greenhouses, A3907-04
 - Biomass Heating in Greenhouses: Case Studies, A3907-05
- Pellet Fuels Institute – www.pelletheat.org
- Educational material, pellet manufacturers list
- Biomass for combustion calculator
 - www.ruralenergy.wisc.edu/esa
- Focus on Energy – www.focusonenergy.com
- Installer list, factsheets, grant information
- Burning Shelled Corn—A Renewable Fuel
 - http://energy.cas.psu.edu/shellcorn.html

Pellet Boiler Image
Questions

This presentation was developed by:
Scott Sanford
Sr. Outreach Specialist
Rural Energy Program
University of Wisconsin-Madison

Comments and suggestions should be directed to sasanford@wisc.edu
The contents of this presentation can be used in whole or in part for greenhouse grower education.