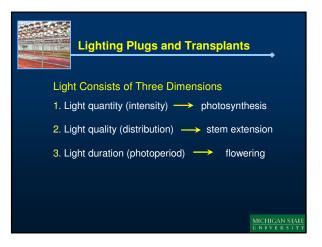
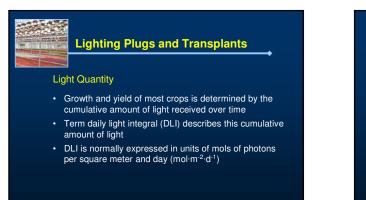


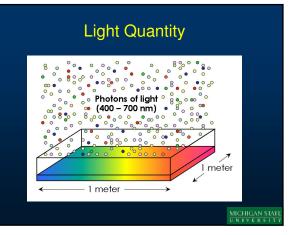
Energy Efficiency in Greenhou Crop Production	ISE
 The increase and fluctuation in fuel prices threatened the profitability of the greenhol industry in the upper Midwest. 	
 One strategy to cope with higher energy p to improve production efficiency and minin energy inputs. 	
	MICHIGAN S
	UNIVERS

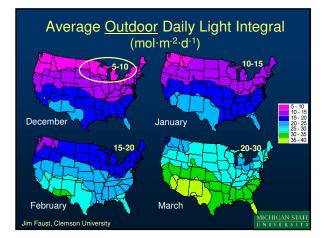
Energy Efficiency in Greenhouse Crop Production

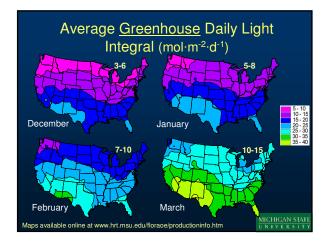
<u>Outline</u>

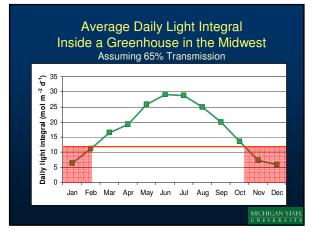

- Using supplemental lighting on plugs and transplants to accelerate cropping
- Controlling photoperiod for rapid flowering of finish plants
- Energy-efficient temperature strategies during the finish stage

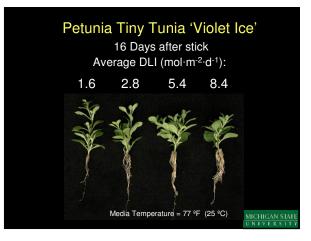

Energy Efficiency in Greenhouse Crop Production


<u>Outline</u>

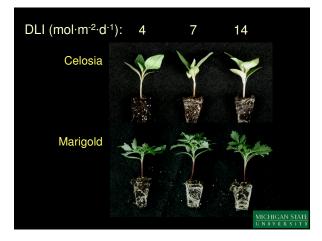

- Using supplemental lighting on plugs and transplants to accelerate cropping
- Controlling photoperiod for rapid flowering of finish plants
- Energy-efficient temperature strategies during the finish stage

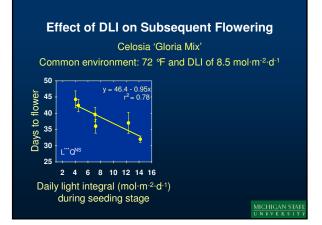

CHIGAN ST

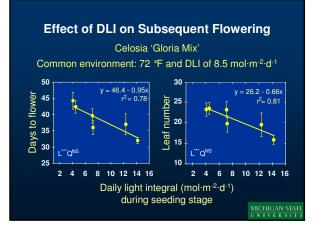



- Structure and obstructions (incl. plants)
- + Supplemental lighting

UGAN STA






Plant Responses to Daily Light Integral:

- Leaves (smaller and thicker)
- Flowers (more and larger)
- Time to flower (faster, due partly to temperature)
- Branching (increased)
- Stem diameter (increased)
- Root growth (increased)

Advantages of HPS Lighting During the Seedling Stage

- Increased dry mass (higher quality)
- Greater root mass
 - More "pullable" plug for transplanting
- Heat from lamps
 - Increases rate of development
 <u>Redu</u>ces finish crop time
- Carryover effects after transplant

MICHIGAN STAT

Supplemental Lighting Guidelines

- Instantaneous light intensity and lighting duration are both important; both determine the DLI provided to plants
- The high-pressure sodium (HPS) lamp is the most efficient lamp type
- Goal is to provide 300 to 600 footcandles of supplemental lighting at plant level (400 to 500 footcandles is typical)
- Lamps are typically operated up to 18 hours on cloudy days, and are turned off when sunny.
- Benefit of supplemental lighting is greatest from October through March. Most growers turn off lamps in April.

MICHIGAN STAT

Energy Efficiency in Greenhouse Crop Production

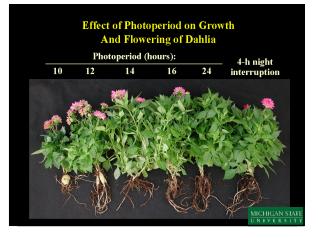
Outline

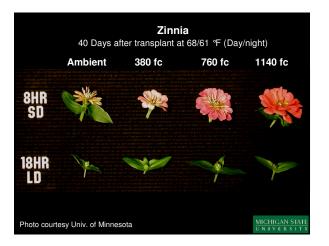
- Using supplemental lighting on plugs and transplants to accelerate cropping
- Controlling photoperiod for rapid flowering of finish plants
- Energy-efficient temperature strategies during the finish stage

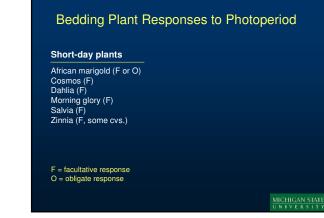
Controlling Photoperiod for Rapid Flowering of Finish Plants

- Flowering in many greenhouse crops is regulated by photoperiod
- The production time of photoperiodic plants is influenced (positively or negatively) by the photoperiod that is provided to plants
- Therefore, by providing the appropriate photoperiod to plants, production time can be optimized

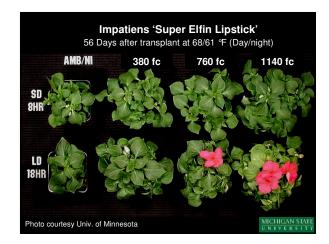
ICHIGAN STA

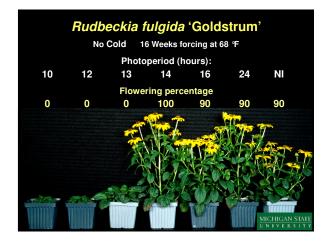

Controlling Photoperiod for papid Flowering of Finish Plants Most crops have one of five flowering responses to photoperiod: Obligate short day Facultative short day Day-neutral Obligate long day Facultative long day

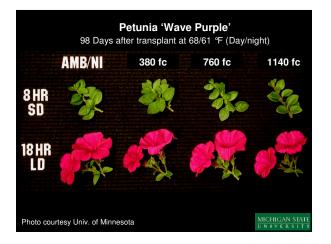




Controlling Photoperiod for Rapid Flowering of Finish Plants Facultative Short-Day Plants

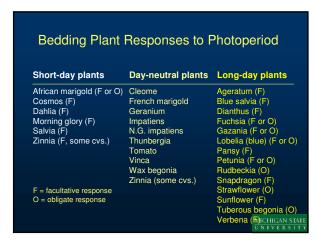

 Plants flower earlier under a short photoperiod than under a long photoperiod

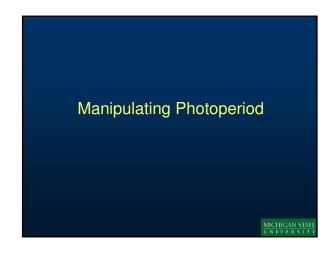




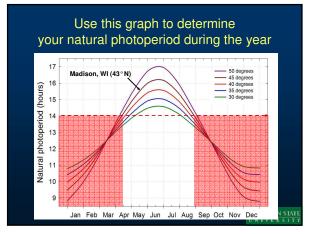
Bedding Plant Responses to Photoperiod

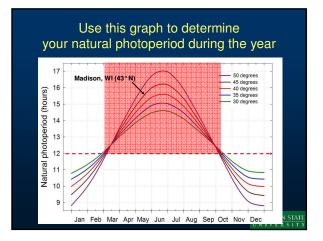
Short-day plants	Day-neutral plants
African marigold (F or O) Cosmos (F) Dahlia (F) Morning glory (F) Salvia (F) Zinnia (F, some cvs.)	Cleome French marigold Geranium Impatiens N.G. impatiens Thunbergia Tomato Vinca
	Wax begonia Zinnia (some cvs.)
F = facultative response O = obligate response	



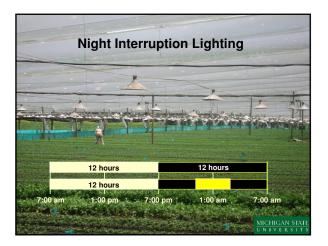


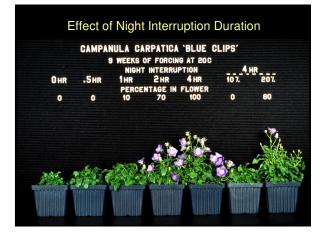
Controlling Photoperiod for Rapid Flowering of Finish Plant	s
Facultative Long-day Plants	
Plants flower earlier under a long photop than under a short photoperiod	eriod
	MICHIGAN STATE





A list of the photoperiod requirements for annuals and perennials can be found at:					
VV VV V	w.hrt.msu.edu/energy/Notebook.htm				
	Greenhouse Energy Cost Reduction Strategies				
	Energy Resource Document				
Temperature Lighting Temperature and Scheduling Energy-Saving Technologies Alternative Fuels Energy-Grants and Loans Supplemental Materials	In an industry with declining profit margins, and with the surge in fuel prices, there is increasing need to grow greenhouse crops in an energy-efficient manner. The best approach is to attack this industry threat using a variety of strategies. In collaboration with horticulturits, acjuituraliar aconomistis, and agricultural enginees, we have developed this web site to provide summary information on production strategies and technologies that greenhouse growers can use to consume less energy and improve production efficiency.				
	We would like to thank the <u>Midligan Elevinitures Groupes Cound</u> who received a grant from the USDA Run Development Office to help subdiate the costs of developing this energy resource document. In addition, <u>Project OBEER</u> has provided infunding to researchers at Midligan State University to generate research-based information on how to optimize temperature and light to increase greenhouse cropping efficiency and thus reduce energy consumption.				
HORICULTURE TEAM	The information on this website was compiled and organized by <u>Matthew Blanchard</u> (Ph.D. candidate) and <u>Frik Runkke</u> (associate professor), Department of Horticulture, Michigan State University. We are continually updating this website as new information becomes available.	<u>хге</u> т у			



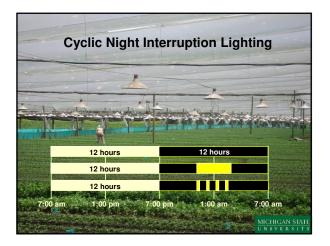


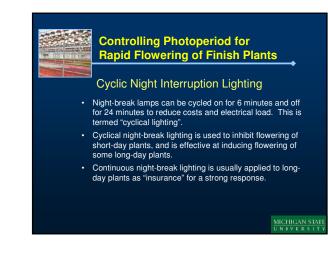
Creating Long Days

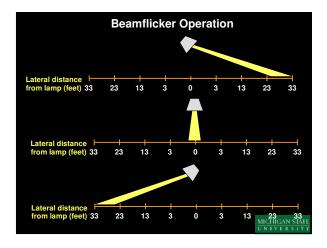
- Incandescent night break
- Day-extension
- Supplemental high-pressure sodium (HPS) lamps
- Cyclic lighting (Boom lighting, Beamflicker, or incandescent lamps)

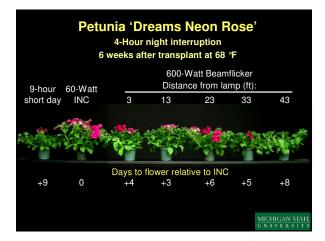
Controlling Photoperiod for Rapid Flowering of Finish Plants

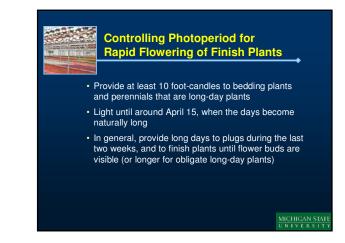

Incandescent Lamps

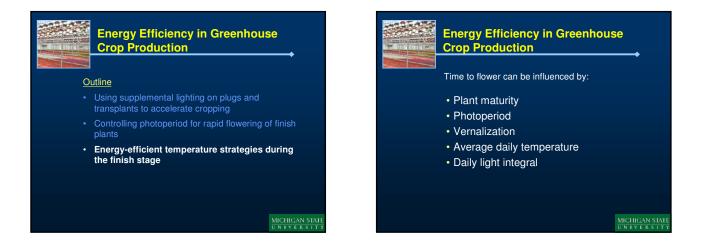

- Advantages
- Compact light source
- Low initial installation cost
- Bulb life is not affected by number of starts (good for cyclic lighting)
- Most commonly used for photoperiodic lighting

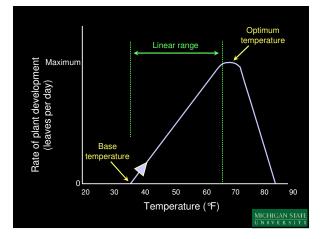


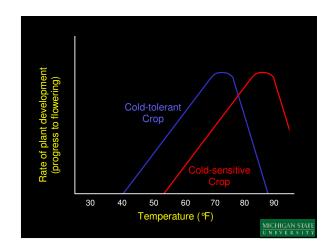


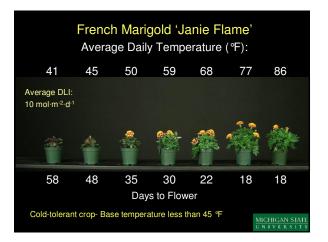


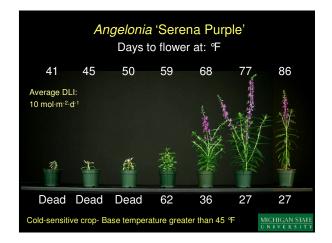

High-Pressure Sodium Lamps on Moving Boom

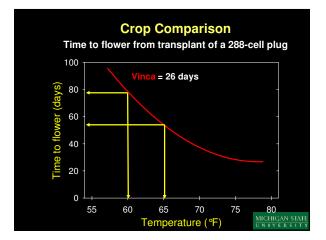


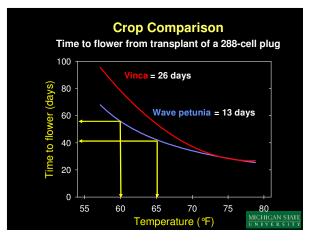


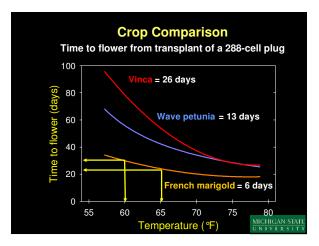


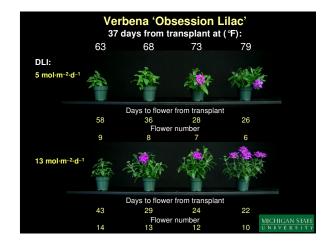


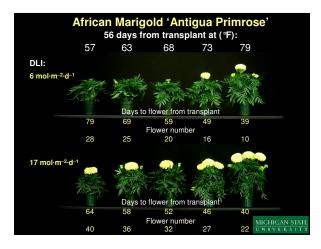


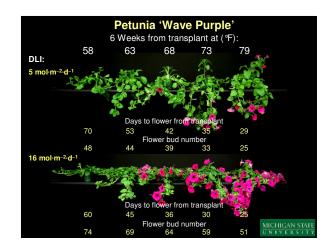




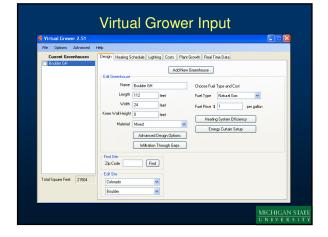


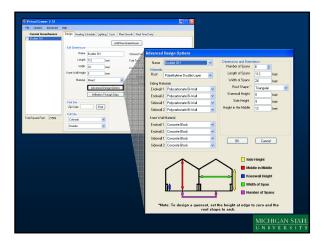

Cold-Tolerant Crops	Cold-Sensitive Crops
(Base temperature <40 ℉)	(Base temperature >45 ℃)
 Alyssum Pansy Campanula Petunia Fantasy Blue', Oreams' Dianthus Rudbeckia Dusty miller Scabiosa Easter Iily Schizanthus Shasta daisy Marigold Namesia Osteospermum Viola 	African violet Alocasia Alocasia Pepper Angelonia Petunia 'Easy Bagonia Wave' Begonia Phalaenopsis orchid Browallia Caladium Poinsettia Caladium Portulaca Canna Purple fountain Celosia grass Cleome Salvia (blue coleus and red) Cosmos Vinca Hibiscus NG impatiens

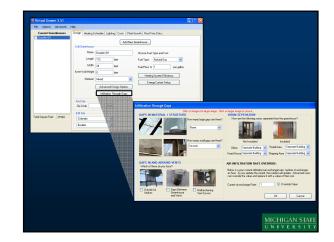

Energy Efficiency in Greenhouse Production

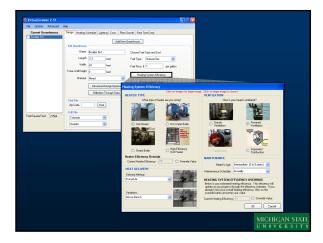

Temperature and DLI Interact to Control Growth and Flowering

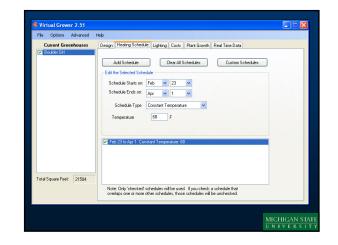
- · Temperature controls the rate of plant development
- DLI can influence:
 - Photosynthesis
 - Plant temperature
 - The leaf (node) number at which plants are induced to flower
- Precise scheduling requires temperature, photoperiod, and DLI inputs

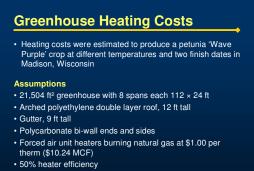

CHIGAN STA

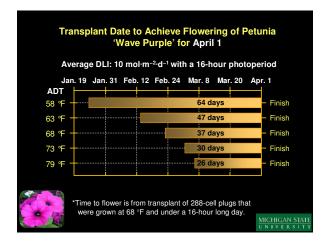


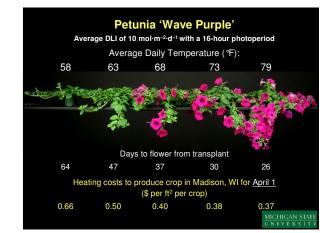


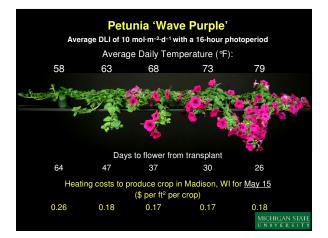


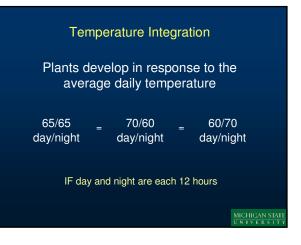




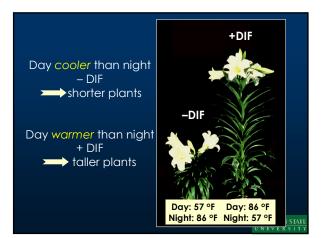





Virtual Grower 2.51							
File Options Advanced	Help						
Current Greenhouses	Design Heating Sche	dule Lighting	Costs Pla	nt Growth	Beal Time Data		
Boulder GH			1000				
	Add a check		Monthly	Heating	Monthly Low		Lighting
	mark to the greenhouses on the		Heating Cost	Cost / Sa. Ft.	Outside Temp (F)	Lighting Costs	Costs 7 Sa. Ft.
	left that you would	January		\$0	-7	\$0	\$0
	like to include in this report.	February		\$0.05	6	\$0	\$0
	The prices	March		\$0.05	7	\$0	\$0
	reflect the cost of fuel to heat each of	April	\$130	\$0.01	22	10	
	the checked		\$130	\$0	32	50	\$0
	greenhouses according to the	May	\$0	\$0			
	schedules set on		\$0	\$0	42	\$0	\$0
	the 'Heating Schedule' tab	July			55	\$0	\$0
	Remember,	August	\$0	\$0	52	\$0	\$0
	greenhouses must also have heating	September	\$0	\$0	42	\$0	\$0
	schedules and	October	\$0	\$0	29	\$0	\$0
	those schedules	November	\$0	\$0	17	\$0	\$0
	must be checked in the Heating	December	\$0	\$0	-3	\$0	\$0
	Schedule' tab in order for them to be	Yearly Totals:	\$7160	\$0.33		\$0	\$0
	used	Based on these					
Total Square Feet: 21504		BTU output rec			1487498 BTU/	hour	
				Generate	Report		
				Generate	(topon		



- No energy curtain
- Hourly air infiltration rate of 1.0



Temperature Integration

- Approximately 75% to 80% of heating occurs at night
- Therefore, a cooler night and a warmer day can consume less energy while still realizing the same average daily temperature
- However, this strategy creates a positive DIF, which promotes stem extension in many greenhouse crops

	ated Heating ladison, WI		i ½ Acre I an Average 65 ℉
Month	+10 °F DIF	0 ℉ DIF	
January	\$11,428	\$11,435 (0%)	
February	\$8,158	\$8,248 (+1%)	
March	\$5,983	\$6,247 (+4%)	
April	\$2,868	\$3,294 (+15%)	
umptions: 0.29/mcf (\$1.0 puble poly gree spans, 112' x 2 plycarbonate b	enhouse	 Arched No curt 	, pater efficiency roof, 9' edge, 12' middle ain system 00am to 7:00pm
Based	on data from Virti	ual Grower, US	DA-ARS

Month	+10 °F DIF	0 ℉ DIF	–10 °F DIF	
January	\$11,428	\$11,435 (0%)	\$11,460 (0%)	
February	\$8,158	\$8,248 (+1%)	\$8,391 (+3%)	
March	\$5,983	\$6,247 (+4%)	\$6,571 (+10%)	
April	\$2,868	\$3,294 (+15%)	\$3,785 (+32%)	
umptions: 0.29/mcf (\$1.0 uble poly gree spans, 112' x 2 lycarbonate b	enhouse	 Arched No cur 	eater efficiency I roof, 9' edge, 12 tain system 00am to 7:00pm	2' mid
Dered	on data from Virti			

Greent		ted Heating adison, WI		1/2 Acre an Average	e 65 °F
	Month	+10 °F DIF	0 ℉ DIF	–10 °F DIF	
	January	\$11,428	\$11,435 (0%)	\$11,460 (0%)	
	February	\$8,158	\$8,248 (+1%)	\$8,391 (+3%)	
	March	\$5,983	\$6,247 (+4%)	\$6,571 (+10%)	
	April	\$2,868	\$3,294 (+15%)	\$3,785 (+32%)	

70 day 65 day 60 day	
60 night 65 night 70 night	ST

Greenhouse Energy Website

www.hrt.msu.edu/energy/Notebook.htm

