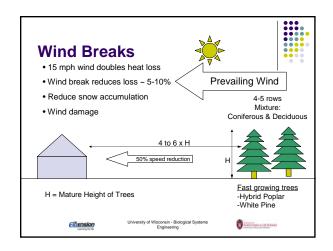
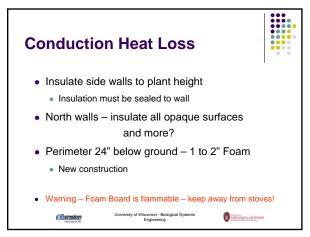
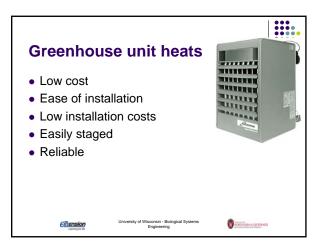
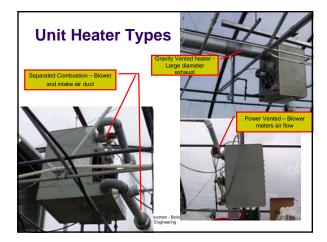
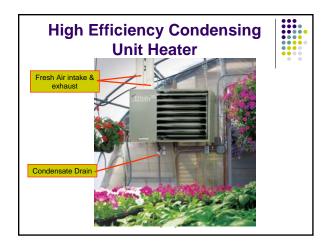

Claring	Motor		mnor	icon	
Glazing	water		mpar	ISON	
	% Light	% Thermal	Conduction		
	Transmission	Transmittance	Heat loss	Estimated	
Material	PAR	IR	U-Value	Life	Flammability
Glass					
Single	88-93	3	1.1	25+	none
Double, insulated	75-80	<3	0.7	25+	none
Acrylic					
Single	93	<5	1.1	20+	high
Double	87	<3	0.6	20+	high
Polycarbonate					
Single	91-94	<3	1.1	10-15	low
Double (6mm to 10mm)	78-85	<3	0.53-0.63	10-20	low
Fiberglass, reinforced					
Single	90	<3	1.2	10-15	high
Polyethylene					
Single	87	50	1.2	3-4	
Double	78	50	0.7	3-4	Varies
Double, IR	78	<20	0.5	3-4	
Extension	Universit	y of Wisconsin - Biologica Engineering	al Systems	Containana	a sectoresce

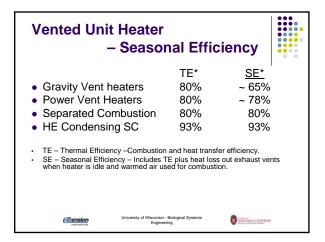


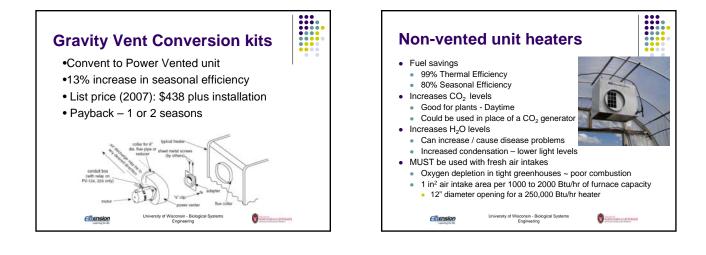


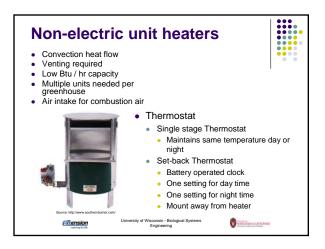




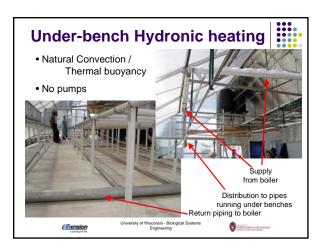


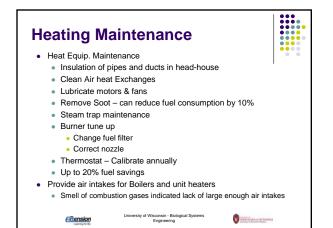





Vented Unit Heaters –Thermal Efficiency					
	TE*	Cost#			
 Gravity Vent heaters 	80%	\$ 1810)^		
 Power Vent Heaters 	80%	\$ 1910)		
 Separated Combustion 	80%	\$ 3443	3		
 HE Condensing SC 	93%	\$ 3798	3		
*TE – Thermal Efficiency –Combustion and heat transfer efficiency. # Manufacturer's Suggested List Price – Actual cost may be less. ^ Manufacturing of Gravity Vented heaters has been discontinued cost is estimated based on historic pricing.					
University of Wisconsin - E Engineerin		California a can benera			

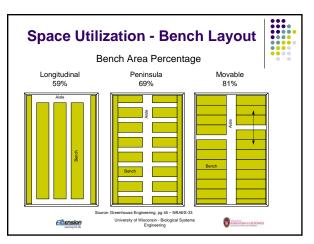
Fuel Savings and Payback					
Heater Type	Incremental Cost	Est. Fuel (Gal.)	% Fuel Savings	Fuel Cost Savings*	Simple Payback (yrs)
Gravity-Vented #&		2494			
Power-Vented #	\$ 200	2078	16%	\$ 624	0.3 (39 days)
Separated Combustion #	\$ 3246	2026	19%	\$ 702	4.6
HE Condensing Sep. Combustion ^	\$ 3956	1743	30%	\$ 1126	3.5
HE Condensing & Power-Vented	\$ 2068	1810	27%	\$ 1026	2.0
	250,000 Btu/hr ratir) Btu/hr rating		ng disconti

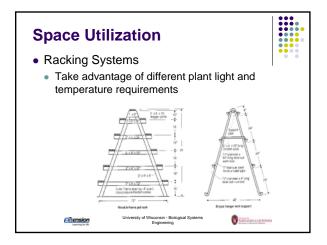


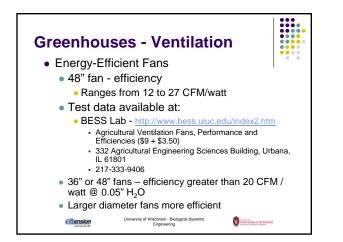

Heating System Distribution Location In-Floor heating w/ Floor growing system Concrete or dirt floor Hydronic heating (hot water) Bench / Under-Bench heating Lower heating costs 20-25% Hydronic or forced air Study - 7% increased yields for tomatoes Forced Air Linder heating distribution

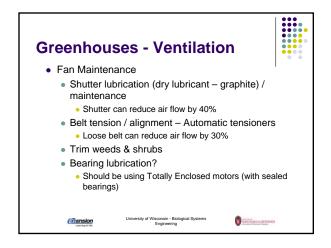
- Forced Air Under-bench distribution
 Poly tubes under bench
- Approximately equivalent to a 5-10F reduction in greenhouse temperature.

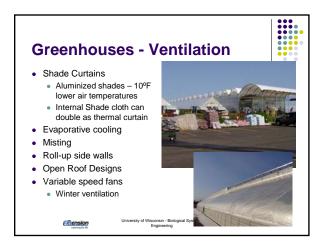


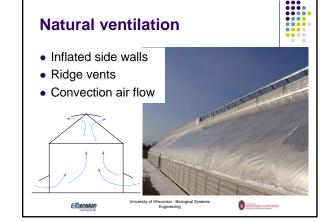


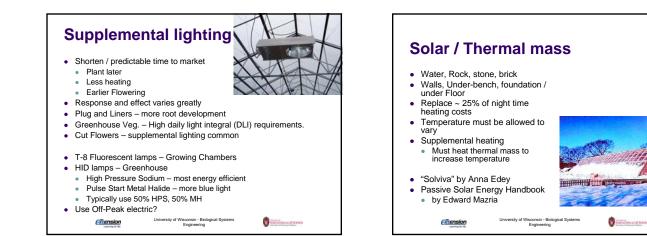


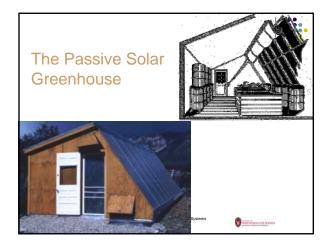


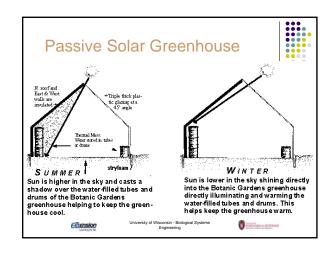





Horse Power	Typ. Std. Eff Motor	High Efficiency
1/4	55%	74%
1/3	60	77
1/2	62-68	78.5
3/4	74	84
1	67	82.5
1-1/2	75.5	84
2	75.5	82.5
3	78	85.5
5	80-82.5	86.5




Natural Ventilation - Open Roof Large vent area ½ acre greenhouse with no fans Likely increased infiltration rates


California California



Greenhouse Tools / Resources

- AgEnergy Resource web site
 www.uwex.edu/energy
- "Energy Conservation for Commercial Greenhouses", NRAES-3, Ithaca, NY, 2001.
- Greenhouse Engineering, NRAES-33, Ithaca, NY, 1994.
 <u>www.nraes.org</u>
- Lighting Up Profits, Paul Fisher & Erik Runkle, 2004
 Ball Publishing
 - www.ballbookshelf.com/detail.aspx?ID=367
- National Greenhouse Manufacturers Association
 - <u>www.ngma.com</u>

University of Wisconsin - Biological Systems Engineering

Contact Information	
Scott Sanford	'
Sr. Outreach Specialist	
Focus on Energy / Rural Energy Issues	
Biological Systems Engineering	
University of Wisconsin – Madison	
460 Henry Mall	
Madison, WI 53706	
608-262-5062	
sasanford@wisc.edu	
Energy Resource Site - <u>www.uwex.edu/energy</u>	
www.focusonenergy.com 1-800-762-7077	
University of Wisconsin - Biological Systems	