

Refueling Wisconsin with Wood Energy Series

Brought to you in partnership with these organizations

Economic Analysis of Wood Energy Projects

Scott Sanford
U of Wisconsin-Madison
Rural Energy Program

Outline

- Feasibility assessment process
- Cost Check list
- *Logs, chips or pellets?
- *****Tools
- **Example**
- Grants and Loans
 - *REAP Lisa Noty USDA Rural Development

- Estimate Heating needs
 - Fuel bills quantity
 - Heating appliance efficiency
 - Specification or testing
 - Calculate Usable Heat
 - Fuel quantity x Btu/unit x efficiency
 - ❖Example 2500 gallon LP gas/yr; boiler 75% eff
 - *2500 gal x 91600 Btu/gal x 0.75 = 171.75 Mbtu/yr

Heat of Combustion (Btu/unit)
Heating Oil – 138,000 Btu/gal
Propane – 91,600 Btu/ gal
Nat. Gas – 100,000 Btu/Therm
Electricity – 3413 Btu / kWh

- Choose fuel type and appliance
 - Need fuel energy content & heating sys efficiency
 - Estimate fuel quantity =

Usable Fuel

Btu/ fuel unit x heating system eff

- Example: Wood pellets @ 8400 Btu/lb
- * 80% eff. Boiler

171,750,000 = 25558 lb \rightarrow 12.8 tons

8400 Btu/lb x 0.80

Heat of Combustion (Btu/unit)
Wood Pellets – ~8,000 Btu/lb
Wood Chips(50%) – ~4500 Btu/lb
Cord Wood(20%) – ~22 MBtu/cord

www.wisconsinwoodenergy.org

- Obtain wood fuel quote
- Calculate savings
- **Example:**
 - *2500 gal LP gas \$ 4875/yr
 - ❖Wood pellet cost \$200 / ton
 - ***1**2.8 x 200 = \$2560 / yr
 - \Rightarrow Savings \Rightarrow \$4875 \$2560 = \$2315

- Obtain installed cost for Combustion Appliance
 - Appliance cost
 - Chimney / vent
 - Electrical connections
 - Plumbing
 - Fuel storage
 - Accessory equipment
 - Cleaning tools, forklift, loader, conveyors, auger, ash disposal
 - Engineering (larger projects)
 - **Permits**

- *Are Fuel Savings Positive?
- ❖Is simple payback < equipment life?</p>
 - Simple Payback
 - = Investment / annual savings
 - Doesn't account for annual costs, repairs, inflation, fuel cost escalation
- Do cash flow analysis or other financial analysis based on your business / finances

Equivalent Annual Cost

- Use discount / interest rate & life or payback period to calculate annual cost of ownership
 - \star EAC = NPV x CR_{t,r} + annual maintenance cost
 - ❖ NPV net present value
 - ❖ CR_{t,r} Capital Recovery factor
 - \Leftrightarrow where t = years of life, r = discount rate
 - Lookup in table (Economic Decision Analysis-2ed.)
 - Example: Capital cost of \$100,000 with 20 year life @ 7% interest; \$2000/yr maintenance cost; \$0 salvage
 - \star EAC = \$100,000 x 0.0944 + \$ 2000 = \$ 11440/yr
- *Add Fuel cost
- Sum to determine annual cost

Cost for biomass system

- Feasibility study
- Engineering Analysis
- Permits
- Equipment Cost
- Freight cost
- Installation cost
- Commissioning
- Annual maintenance / cleaning / repairs

Chips, pellets or logs??

- Capacity
- Availability
- **&** Labor
- Storage
- Capital Cost
- *Emission requirements
- **❖** Fuel cost
- Truck access

- ❖ Propane < 35,000 gal</p>
- ❖ Fuel oil < 22,500 gal</p>
 - Pellets or firewood
- **❖** Propane ≥ 35,000 gal
- **❖** Fuel oil ≥ 22,500 gal
 - Pellets / Chips / Firewood

Based on USFS experience

Analysis Tools

- Michigan Wood Energy calculator
 - ❖ Developed by SE MI RC&D
- Wood Energy Financial App
 - Developed by University of Minnesota
- RETScreen International
 - Developed by Natural Resource Canada

Michigan Calculator

- Michiganwoodenergy.org
- **Inputs**
 - Contact info email & location
 - Type of facility
 - **❖**Boiler size
 - Current Fuel Type
 - Current Fuel price
 - *Annual fuel use
 - Cost of wood fuel (pellet or wood chips
 - ❖Financing interest rate (%)

Michigan Calculator

- Assumptions
 - No grants
 - ❖ Financing 10 years
 - ❖ Wood chips > 3 Mbtu/hr
 - ❖ Wood Pellets <= 3 Mbtu/hr</p>
 - **❖** Portion of fuel wood: 95%
 - *Portion of fuel current fuel: 5%
 - ❖Wood boilers sized ½ existing boilers

Michigan Calculator

- Sample output
- **Emails** results

Michigan Wood Energy Report

Estimated Total Project Cost: \$59,100.00

Simple Payback: 8.1 years

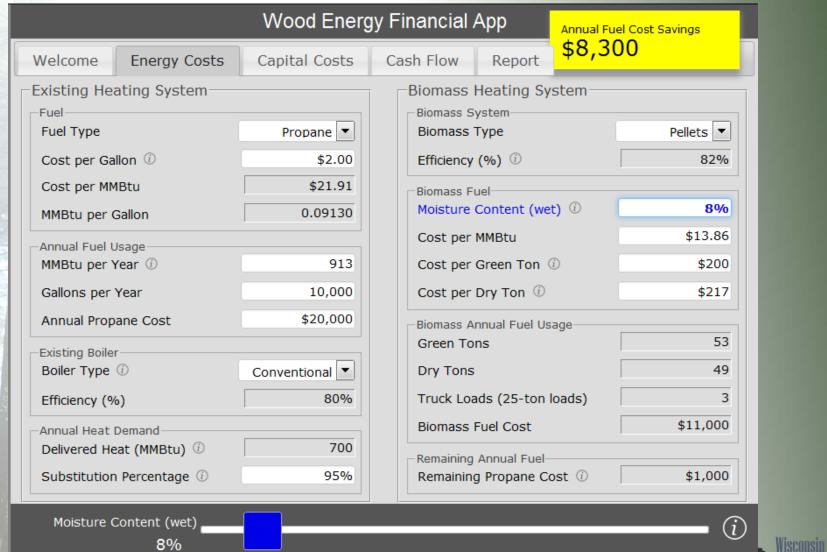
Project Financing Information						
Percent Financed	100%					
Amount Financed	\$59,100.00					
Amount of Grants	\$0.00					
Interest Rate	5%					
Term	10 Years					
Annual Finance Cost - Principal and Interest	\$7,654.00					

Annual Project Costs								
Cash Flow Descriptions	Unit Costs	Fuel Source Proportion	Annual Fuel Quantities	Fuel Units	Year 1 Costs			
Estimated Existing Annual Costs								
Existing Fuel (propane)	\$2.00		10,000.00	gallon	\$20,000.00			
Estimated Proposed Wo	Estimated Proposed Wood-Fired System Annual Costs							
Wood Fuel (pellets)	\$200.00	95%	56	ton	\$11,200.00			
Existing Fuel	\$2.00	5%	500.00	gallon	\$1,000.00			
Additional Operation and Maintenance Costs					\$500.00			
Total Proposed Annual Costs					\$12,700.00			
Annual Cost Savings					\$7,300.00			
Annual Finance Cost - Principal and Interest					\$7,654.00			
Net Annual Cash Flow					(\$354.00)			

Your Current Information

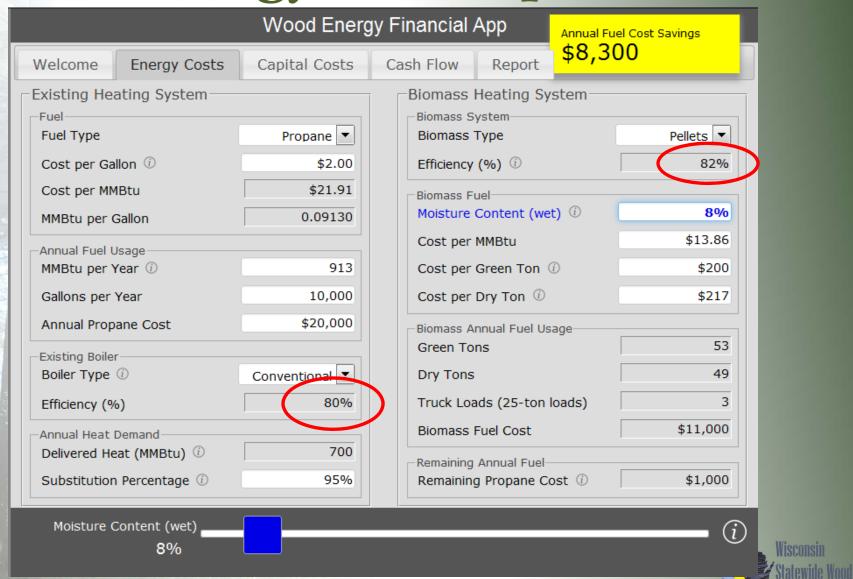
This is the information you submitted via the calculator:

- E-mail: sasanford@wisc.edu
- County: outstate
- · Facility type: Industry
- Combined boiler size: 300,000,00 htm

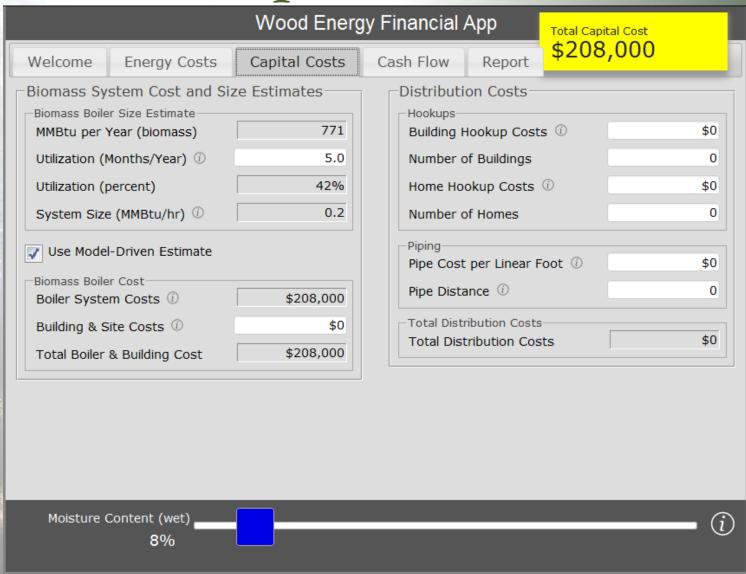


MN Wood Energy Financial App

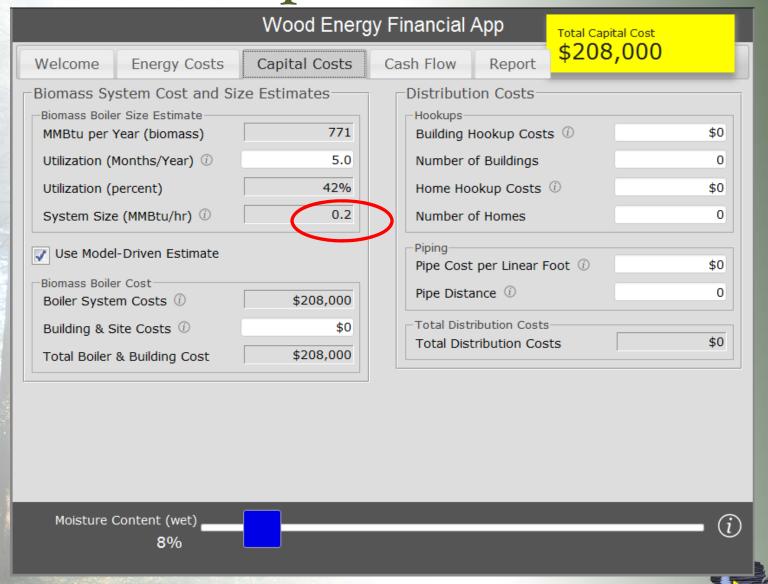
- woodenergy.umn.edu/BiomassCalculator/
- More detailed inputs
- Model estimated Capital costs
 - Overestimates capital costs for smaller systems
 - Indicates projects not feasible that may be.
- New version 2015
 - Revised cost estimations
 - More accurate for small systems


Energy Cost Inputs

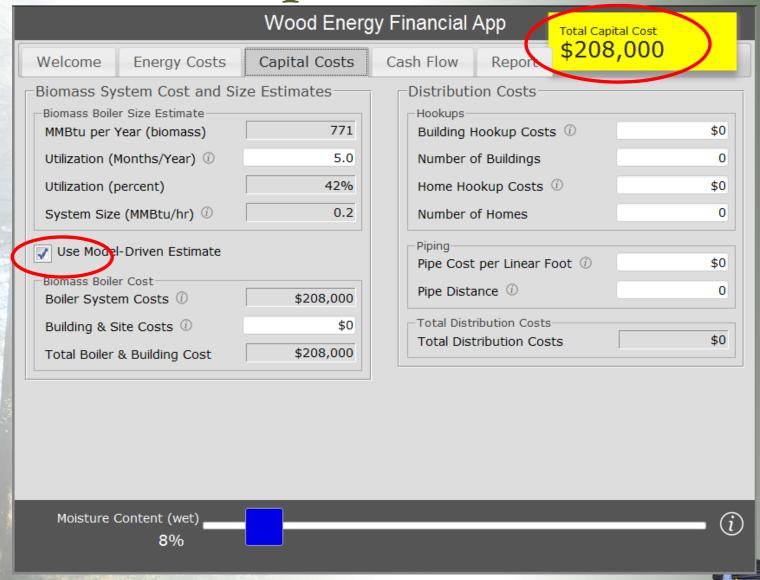
Statewide Wood


Energy Team

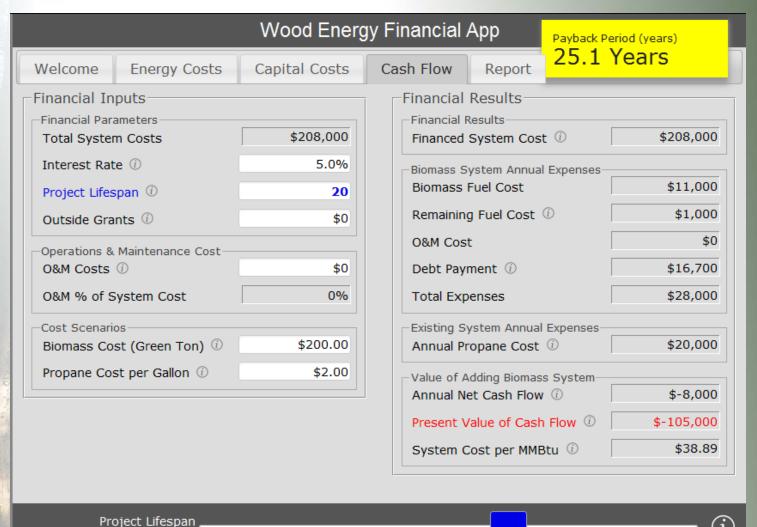
Energy Cost Inputs


Energy Team

Capital Costs


Wisconsin

Capital Costs


Wisconsin

Capital Costs

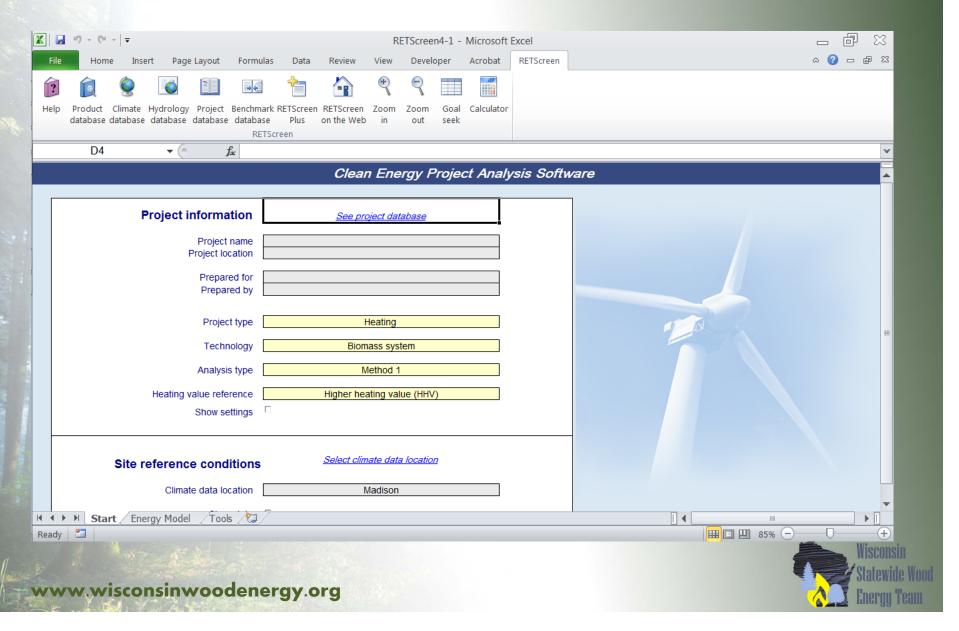
Wisconsin

Cash Flow Analysis

Wisconsin Statewide Wood

Energy Team

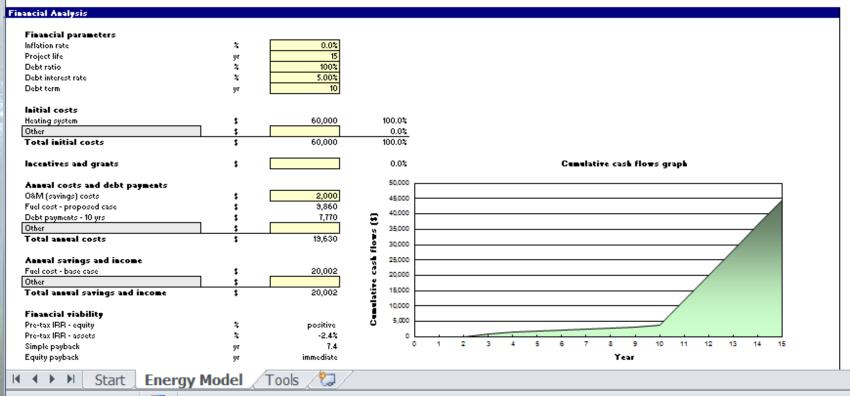
www.wisconsinwoodenergy.org


20

RET Screen

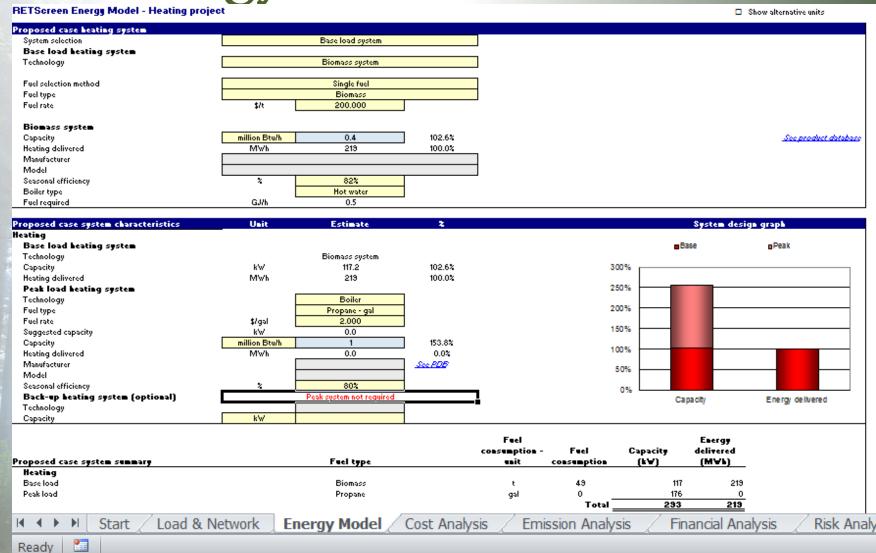
- http://www.retscreen.net/
- Developed by Natural Resource Canada
- Downloaded Excel spreadsheet
- Climate data driven model
- Capable of handling complex projects
 - District heating
 - Case studies / templates
- *Few default values

RET Screen - Method 1


RET Screen Input page

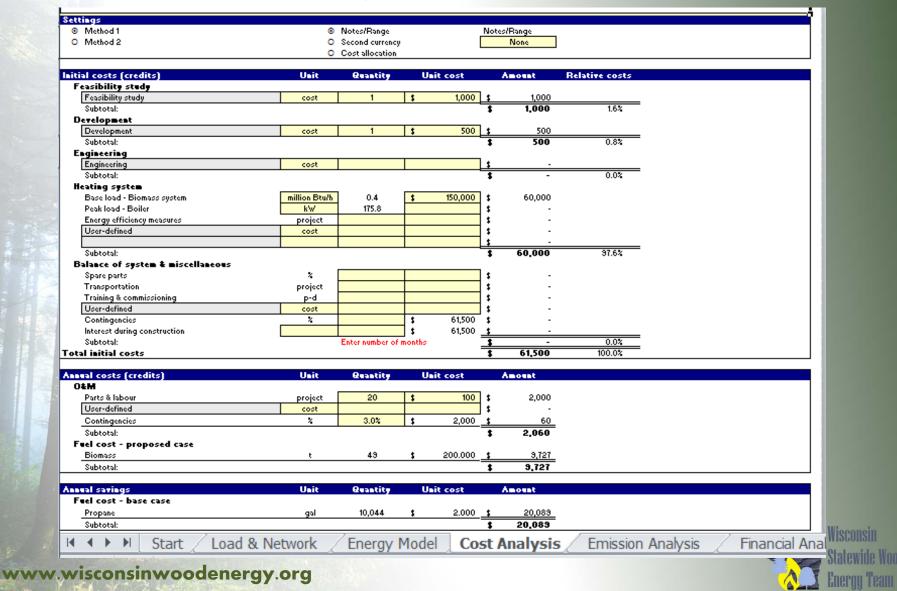
		Base case	Proposed case		Incremental initial costs
Heated floor area for building	- ft²	5,974]		
Energy efficiency measures		•			
Heating load for building	(Btulh)/ft²	65	65		
Domestic hot water heating base demand	%	0%	0%		
Total heating	MWh	218	218		
Base load heating system					
Technology			Biomass system		
Capacity	million Btulh	0.4	0.3	77.3%	\$ 60,000
Heating delivered	MWh	217.9	214.2	98.3%	
Fuel type		Propane - gal	Biomass		
Seasonal efficiency	%	78%	82%		
Fuel consumption - annual	gal	10,001	48	t	
Fuel rate	\$/gal	2.000	200.000	\$/t	
Fuel cost	\$	20,002	9,521		
Peak load heating system					
Technology					
Suggested capacity	million Btulh		0.1		
Capacity	million Btulh		0.6	154.5%	
Fuel type		_	Propane - gal		
Seasonal efficiency	%		78%		
Fuel consumption - annual	gal		170		
Heating delivered	MWh		3.7	1.7%	
Fuel rate	\$/gal		2.000		
Fuel cost	\$		340		
	•				
Emission Analysis					
	Tools / 🖫 /				

RET Screen Financial Analysis


Ready Filter Mode

RET Screen - Method 2

- Load Analysis
 - Heating loads by month
 - Multiple buildings
- Energy Model
 - Multiple fuels
- Emissions Analysis
- Financial Analysis
- Sensitivity / Risk Assessment



Energy Model – Method 2

Cost Analysis – Method 2

Financial Analysis – Method 2

RETScreen Financial Analysis - Hea	iting projec	t								
Financial parameters			Project costs and savingsline	ome summary			Yearly	cash flows		
General			Initial costs				Year	Pre-tax	After-tax	Cumulative
Fuel cost escalation rate	%		Feasibility study	1.6%	\$	1,000	#	\$	\$	\$
Inflation rate	%		Development	0.8%	\$	500	0	0	0	0
Discount rate	%	5.0%					1	337	337	337
Project life	уг	15					2	337	337	674
			Heating system	97.6%	\$	60,000	3	337	337	1,012
Finance							4	337	337	1,349
Incentives and grants	\$						5	337	337	1,686
Debt ratio	%	100.0%					6	337	337	2,023
Debt	\$	61,500	Balance of system & misc.	0.0%	\$	o	7	337	337	2,360
Equity	\$	o	Total initial costs	100.0%	\$	61,500	8	337	337	2,698
Debt interest rate	%	5.00%					9	337	337	3,035
Debt term	уг	10					10	337	337	3,372
Debt payments	\$/yr	7,965					11	8,302	8,302	11,674
			Annual costs and debt payme	ents			12	8,302	8,302	19,976
			0&M		\$	2,060	13	8,302	8,302	28,277
ncome tax analysis			Fuel cost - proposed case		\$	9,727	14	8,302	8,302	36,579
			Debt payments - 10 yrs		\$	7,965	15	8,302	8,302	44,88
			Total annual costs		\$	19,752				
			Periodic costs (credits)							
Annual income			Annual savings and income Fuel cost - base case		\$	20,089				
Electricity export income										
I	rk / Enera	Model / Cost	t Analysis / Emission Analy	sis Finan	cial Analys	sis Risk A	nalysis	/1 1	IIII	

Sensitivity Analysis – Method 2

Perform analysis on	After-ta	x IRR - equity					
Sensitivity range		10%					
Threshold	20	%					
				Initial costs		\$	
Fuel cost - base case		55,350	58,425	61,500	64,575	67,650	
\$		-10%	-5%	0%	5%	10%	
27,815	-10%	positive	positive	positive	positive	positive	
29,361	-5%	positive	positive	positive	positive	positive	
30,906	0%	positive	positive	positive	positive	positive	
32,451	5%	positive	positive	positive	positive	positive	
33,997	10%	positive	positive	positive	positive	positive	
				Initial costs		\$	
Fuel cost - proposed case		55,350	58,425	61,500	64,575	67,650	
\$		-10%	-5%	0%	5%	10%	
13,133	-10%	positive	positive	positive	positive	positive	
13,863	-5%	positive	positive	positive	positive	positive	
14,592	0%	positive	positive	positive	positive	positive	
15,322	5%	positive	positive	positive	positive	positive	
16,052	10%	positive	positive	positive	positive	positive	
				Initial costs		\$	
Debt interest rate		55,350	58,425	61,500	64,575	67,650	
%		-10%	-5%	0%	5%	10%	
4.50%	-10%	positive	positive	positive	positive	positive	
4.75%	-5%	positive	positive	positive	positive	positive	
5.00%	0%	positive	positive	positive	positive	positive	
5.25%	5%	positive	positive	positive	positive	positive	
5.50%	10%	positive	positive	positive	positive	positive	
◆ ▶ ► Start / Lo	ad & Networ	k / Energy Mod	del / Cost Analysis	Emission Ana	lysis / Financi	al Analysis	Risk

Comparison of tools

- Propane heating system
 - *\$2.00 per gallon
 - 10,000 gallons per year
 - ❖80% efficient
 - *Capacity: 300,000 Btu / hr
- **Biomass**
 - ❖ Pellet boiler @ 82% eff
 - *\$200 per ton
 - ❖5% interest rate
 - *95% biomass / 5% propane
 - *10 year financing term

MI vs MN Analysis tools

	Energy Cost Savings	Capital Cost	Principle and interest (1)	Payback (yrs)
MI	\$ 7300	\$ 59,100	\$ 7654	8.1
MN	\$ 8300	\$ 208,000	\$ 16700	25.1
RET Screen	\$10,479	\$ 60,000 (2)	\$ 7770	7.4

- 1) MI repayment 10 yrs; MN 20 yrs; RET Screen 10 yrs
- 2) User input

Resource Guides

Community Biomass Handbook

http://woodenergy.umn.edu/CommunityBiomassHandbook.pdf

COMMUNITY BIOMASS HANDBOOK VOLUME I: THERMAL WOOD ENERGY

Chapter 1: Introduction
Why Biomass Matters

Chapter 2: Heating With Wood

Is Biomass Heating Right for You?

Chapter 3: Technology That Works Cordwood, Chips, and Pellets

Chapter 4: Biomass Supplies That Work
Access, Economics, and Energy Principles

Chapter 5: Roadmap to Success
The Project Development Lifecycle

Chapter 6: Wood Energy Financial App Using the App in Your Assessment Process

Chapter 7: Engage Your Community

Checklist of Good Project Components

Chapter 8: Finalize Project Candidate
Checklist of Good Project Components

Chapter 9: Launch Your Project
What Happens Next

Chapter 10: Park County Schools RE-2 Case Study

Chapter 11: Colorado State University

Case Study

Chapter 12: Acknowledgments

Resources

- Wood Pellet Heating: A Reference of Wood Pellet Fuels & Technology for Small Commercial & Institutional Systems – 2007
- Wood-Chip Heating Systems: A Guide for Institutional and Commercial Biomass Installations-2004
- *Heating with Biomass: A Feasibility Study of Wisconsin Schools Heated with Wood 2008
- **Other references available at:**

www.biomasscenter.org/resource-library/publications

Grants and Incentives

- Wisconsin Focus on Energy
 - Must be using Natural gas
 - Very few projects funded
- Grant from USDA Rural Development
 - Rural Energy for America Program (REAP)
 - Grants and Loans
 - Community Facilities Direct Loan & Grant
 - Community Facilities Loan Guarantees
 - Business & industry Loan Guarantee

Grants and Incentives

- Forest Service Wood Innovation Grants
 - up to \$250,000 for final engineering on projects
 - http://www.na.fs.fed.us/werc/wip/2015-rfp.shtm
- USFS Wood Education and Resource Center Wood Energy Technical Assistance program
 - Wood energy feasibility studies at no cost to facility owner.
 - Email sasanford@wisc.edu for application

Rural Energy for America Program

REAP

Lisa Noty
Energy Division
Regional Energy
Coordinator Midwest

REAP - Assistance

- Types of Assistance
- ✓ Guaranteed Loans
- ✓ Grants
 Set aside \$20,000 or less
 Unrestricted
- ✓ Guaranteed Loan Grant Combinations

REAP Funding - 2015

- Farm Bill \$50 million per year
- √ 2014 and 2015 funds available in 2015
- ✓ Guaranteed Loan funds ~\$200 million
- ✓ Set aside \$20,000 or less \$10 million
- ✓ Unrestricted Grants \$68 million
- Annually appropriated funds

REAP – Eligible Applicants

- Rural Small Business
 Private entity (Sole proprietorship,
 Partnership, and Corporation)
- Agricultural Producers

REAP – Eligible Applicants (cont.)

- Must
 - Own or control site
 - Sufficient Revenue
 - Project
 - Operation & maintenance
 - Legal Authority and Responsibility
 - Registration number (SAM)

REAP – Eligible projects (cont.)

- Technical Merit
 - Project description (commercially available)
 - Qualifications of installer/contractors,
 - Energy audit or resource assessment,
 - Equipment availability,
 - Timeline
- Pass Fail

REAP – Eligible Projects (cont.)

- Bioenergy
 - Pellet mills, biomass boilers, ethanol, and biodiesel facilities
- Anaerobic Digesters
 - Facilities that use animal or food waste to produce methane and then convert the methane to electricity
- Geothermal

REAP - Eligible Projects (cont.)

- Hydrogen
 - Derived from a renewable resource
- Solar
- Wind
- Hydroelectric
- Hybrids
- Energy Efficiency improvements

REAP – Application Process

- Three application levels
 - RES and EEI Projects with Total Project Costs of \$80,000 or Less
 - RES and EEI Projects with Total Project Costs of Less Than \$200,000, but More Than \$80,000
 - RES and EEI Projects with Total Project Costs \$200,000 and Greater

REAP – Application Process (cont.)

- Fiscal Year 2015
 Application deadline dates
 - April 30
 - June 30

Fiscal Year 2016 Application deadline dates

- October 30
- April 30

REAP – Application Process (cont.)

- Maximum grant assistance (FY) \$750,000
- Grant
 - 25% of total eligible project costs
- Renewable Energy System Grant
 - minimum grant \$2500,
 - maximum \$500,000
- Energy Efficiency Improvement Grant
 - Minimum grant \$1500,
 - Maximum \$250,000

REAP – Application Process (cont.)

- Guaranteed Loan and combo's
 - 75% of total eligible project costs
- Guaranteed Loan
 - Minimum \$5,000
 - Maximum \$25 million

REAP – Application Process (cont.) Helpful to know

- Only Post-application expenses are eligible
- Reimbursement Grant
- Grant Agreement
- Reporting requirements

Energy Programs

✓ LOAN SIZE

- Minimum Loan Amount: \$5,000
- Maximum Loan Amount: \$25,000,000

✓ GUARANTEE

- 85% for loans \$600,000 or less.
- 80% for loans over \$600,000 up to \$5 Million
- 70% for loans over \$5
 Million up to \$10 Million
- 60% for loans over \$10
 Million

✓ MAXIMUM TERM LIMITS

- Working Capital 7 Years
- Machinery & Equipment 15 Years (or useful life, which every is less)
- Real Estate 30 Years

✓ INTEREST RATE

- Fixed or Variable; if variable cannot adjust more then quarterly
- Negotiated between lender and borrower

WHAT IT CAN DO FOR BORROWERS

Assists in providing stability and growth through energy efficient improvements and renewable energy utilization.

Provides the ability to receive:

- ✓ Higher Loan Amounts
- ✓ Competitive Interest Rates
- ✓ Longer Repayment Terms

REAP

Scoring

Maximum of 100 points

REAP Scoring (1) Energy Generated, Replaced, or Saved

Maximum of 25 points for criterion

Quantity of Energy Generated or Saved per REAP Dollar Requested

Maximum of 10 points in sub-criterion

Quantity of Energy Replaced, Saved, or Generated

Maximum of 15 points in sub-criterion

(2) Environmental Benefits

-Maximum of 5 points for criterion

Applicant must document in application the project's positive effect on any of the three impact areas:

- 1. Resource Conservation (e.g., water, soil, forest)
- 2. Public Health (e.g., potable water, air quality)
- 3. Environment (e.g., compliance with EPA's renewable fuel standard(s), greenhouse gases emissions, particulate matter)

(3) Commitment of Funds

Maximum of 20 points for criterion

Based on percentage of written commitment an Applicant has from its Funding Sources that are documented with complete application

(4) Size of Agricultural Producer or Rural Small Business

Maximum of 10 points for this criterion

Based on the size of the Applicant's agricultural operation or business concern, as applicable, compared to the SBA Small Business size standards categorized by the NAICS code

(5) Previous Grantees and Borrowers

A maximum of 15 points for this criterion

Points based on whether the Applicant has received a grant or guaranteed loan under the REAP RES/EEI program

(6) Simple Payback:

A maximum of 15 points for this criterion

Payback: EEI Reduce or RES Replace Onsite Use

Eligible Project Costs/Dollar value of energy reduced or replaced

(7) State Director and Administrator Priority Points

A maximum of 10 points for this criterion.

Contact Information Brenda Heinen brenda.heinen@wi.usda.gov (715) 345-7615 x139

Lisa Noty

lisa.noty@wdc.usda.gov

(712) 243-2107 x116

Rural Energy for America Program (REAP)

www.rd.usda.gov/reap

USDA is an equal opportunity provider and employer. To file a complaint of discrimination, write: USDA, Office of the Assistant Secretary for Civil Rights, Office of Adjudication, 1400 Independence Ave., S.W., Washington, DC 20250-9410 or call (866) 632-9992 (Toll-free Customer Service), (800) 877-8339 (Local or Federal relay), (866) 377-8642 (Relay voice users).

What will I learn?

* Webinar Schedule (All webinars will run from 1:00 PM to 2:15 PM CST)

Presentation slides and videos of presentation will be available at wisconsinwoodenergy.org/learning.html

**	Feb 18	The Wisconsin Energy Picture

- * Feb 25 Types of Wood Fuels & Appliances
- March 4 Pre-Feasibility Assessment Tools & Grant Funding
- * March 11 Residential/Commercial Project Examples & Economics
- March 18 Overview of Industrial Wood Heating & Power Systems
- * March 25 Case Study of Large Scale Wood Energy Projects
- * April 1 Wood Fuel Supply and Distribution Business
- * April 8 Wood Energy Cluster Development /District Heating

Questions

This presentation was develop by:
Scott Sanford
Distinguished Outreach Specialist
Rural Energy Program
University of Wisconsin-Madison

Comments and suggestion should be directed to sasanford@wisc.edu

