

Energy Efficient Wood Heating Appliances for Home and Business

Scott Sanford Sr. Outreach Specialist Rural Energy Program

Disclaimer

- Products mentioned in this presentation do not reflect an endorsement of that product.
- Likewise, a lack of acknowledge does not imply that a product is not recommended.
- Photo Credit: Scott Sanford unless noted otherwise

Outline

- What make an efficient appliance?
- Types of wood fuels
- Types of Wood Burning Appliances
- Heat distribution
- Smoke Emissions
- Firebox Management
- Case Study of two greenhouses

Biomass Fuels

Credit: Ohio State University

- A fuel derived from plant material
 - Wood (cord, chips, pellets)
 - Grains (corn, rye, wheat,...)
 - Cherry pits, sunflower hulls
 - Prairie grass (switchgrass, miscanthus)
 - Crop fodder (corn stalks)
 - Straw (wheat, oat, barley)
 - Oils

Types of Wood Fuels

Cord wood

Green mill residue

- Hogged bark & sawdust
- High moisture (>20%)
- Store outside in piles

• Dry mill residue

- Low moisture (< 10%)
- Sawdust, trimmings, wood from wood products companies

Wood Chips

- Whole tree chips, round wood chips, clean chips
- Typically high moisture (~50%)
- Energy content varies with H₂0, density and ash

5

Direct Use - Wood

Cord wood / logs

Learning for life

Unit of measure – Cord

- 4 ft x 4 ft x 8 ft stack of wood 128 cu ft
- Moisture 50% as harvested
 - Air Dried ~ 20% (1 2 years)
- Energy content varies with tree species
 - Average 22,300,000 Btu / cord @ 20% moisture
 - Range 14,700,000 to 30,700,000 Btu / cord
 - Different species vary in density (lbs / cord)
 - Basswood 2100 lb / cord; Hickory 4160 lb / cord
 - All wood about 7000 Btu / lb. @ 20% moisture

6

Cord wood

- "Low cost" ???
- Labor intensive
 - Handle 3 to 6 times
- Harvesting

Credit: JoAnn Sandberg

- Cut, transport, split, pile/stack,
- Air dry Minimum 1 summer / 2 better
 - Plan requirements 1-2 yrs ahead
- Refueling labor
- Ash disposal
- Energy content depends on species
- High emissions new regulations

Burning Characteristics of Select Wood Species

Wood Species	Weight (Ibs/cord)		Energy per dry cord	Relative smoke	
	Green	Air dried	(Million Btus)	emissions	
Green Ash	4184	2880	20.0	Low	
Birch	4312	2992	20.8	Medium	
Boxelder	3589	2632	18.3	Medium	
Cottonwood	4640	2272	15.8	Medium	
American Elm	4456	2872	20.0	Medium	
Black Locust	4616	4016	27.9	Low	
Sugar/Rock Maple	4685	3680	25.5	Low	
Silver Maple	3904	2752	19.0	Low	
Bur Oak	4960	3768	26.2	Low	
White Oak	5573	4200	29.1	Low	
White Fir	3585	2104	14.6	Medium	

Source: M. Kuhns & T. Schmidt, Heating with Wood, University of Nebraska-Extension

Direct Use – Green Wood Chips

Local availability

Low cost

Moisture Content

- Green ~ 50% moisture
- Lower energy content
 - 4500 Btu/lb

Bulk handling

- Augers
- Loaders

Storage

- Outside pile
- Bunker / covered

Source: NREL

Densification Pellets / Cubes

- Use of by-products / low value materials
 - Sawdust, wood chips, waste wood
- Facilitates handling
- Reduces transportation costs
- Uniform product
- Automatic stoking
- Low emissions / low smoke
- Higher thermal efficiency 80% to 90+%
- Bulk Handling grain handling equipment
- Higher cost / energy input

Wood Pellets

- Material Sawdust, wood residue
- Unit of measure Tons or pounds
 - Bulk in tons or 40-50 pound bags
- Moisture
 - 6 to 10% depending on grade
- Energy content
 - Average 8000 Btu / Ib

- Grades (Pellet Fuels Institute)
 - Utility, standard, premium, super premium
 - Difference is mainly ash content 6%, 2%, 1%, 0.5%
- Uniform product
 - 1/4" to 5/16" diameter x 1" to 1-1/2" long

Biomass Pellets

- Materials
 - Prairie grass mixes (Switchgrass, Miscanthus, hay)
 - Straw (wheat, oat, barley, rye)
 - Corn fodder (stalks & cob)
 - Nut hulls, sunflower hulls
 - Wood residue
- Unit of measure
 - Bulk in tons or 50 pound bags
- Moisture
 - 8-11% typical
- Energy content

Learning for life

- 7200 to 8000 Btu per pound
- Higher energy contents typically include some wood residue
- Chloride content Often higher than PFI standard of 300 ppm max
 - High temperature corrosive agent boiler corrosion over time

12

How does wood burn?

- Heat drives off moisture
- Wood undergoes Pyrolysis
 - Breaks down into organic gases
 - 85% of mass and 60% of heat value in gases
- Charcoal burns at 1100 °F
- Unburnt residue
 - Smoke or creosote
- Complete combustion requires 3 "T"s
 - Temperature 1100 to 1500°F to ignite pyrolysis gas
 - Turbulence 10-12 lbs air per lb of pyrolysis gas
 - Time 2 to 4 sec in high temp zone

What is a boiler versus a furnace?

- Boiler heats a fluid (water, glycol/water solution, steam)
 - Hydronic Heater (water heater)
 - Fluid can be pumped to the location where it is to be used.
- Furnace heats air
 - Air blown through ducts to location needed

Outdoor Hydronic Heater

Pellet furnace Credit: HarmanStoves

Pellet boiler & bin Credit: Josh Kaurich 14

Boilers

- One boiler can heat multiple locations
- One system for floor heating and supplemental heating with heat exchanger
- Multiple boilers can be in central location
 - One fuel storage system
- Can be located outside
- Store heat insulated tank
 - To meet peak needs

Source: www.renewenergies.com

SRICULTURAL & LIFE SCIENCES Versity of Wisconsin-Madison

Furnaces

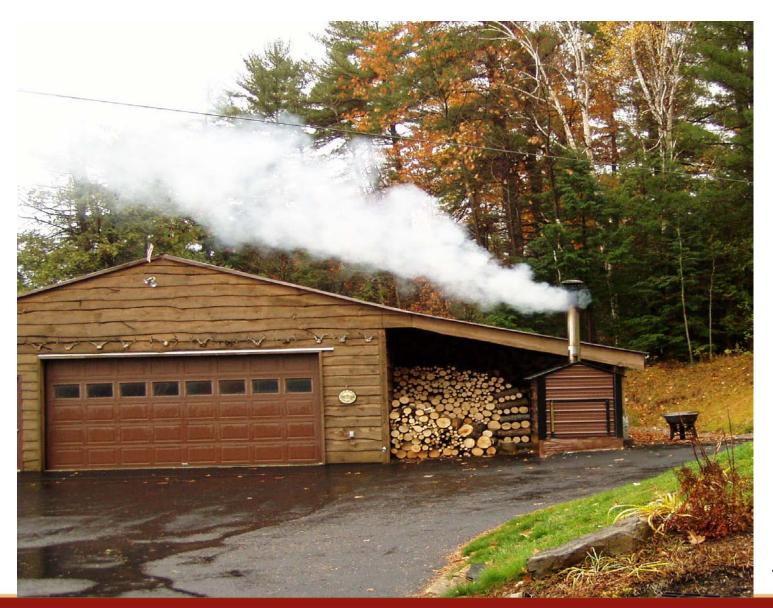
- Heats air directly
 - Reduces heat exchange losses
- Located in or adjacent to building
- No water leaks to worry about

Source: www.tractorbynet.com

- May need multiple furnaces per building
 - Lower capacity
- Multiple fuel storage bins
 - More labor to fill furnace hoppers

Outdoor Wood-Fired Boilers

- Fuel: cord wood, wood scrape materials, pallets
- "Cheaper" Fuel? What is the true cost?
 - Labor & equipment to collect & harvest fuel
 - Labor to re-fuel
 - Disposal of Ash
- High Smoke emissions rate
 - Reduced with firebox management
- Low Efficiency Average 40%
 - pre-2008 efficiency range: 20 to 50%
- Great for use with floor heating
- Can use with Air Exchanger
- Fuel with scrap materials?
 - NO Glue, NO paint, NO Chemical contamination,
 - NO Pressure-Treated wood
- Increasing regulation due to smoke emissions



Outdoor Wood Boiler Emissions

EPA Certified Outdoor Boilers

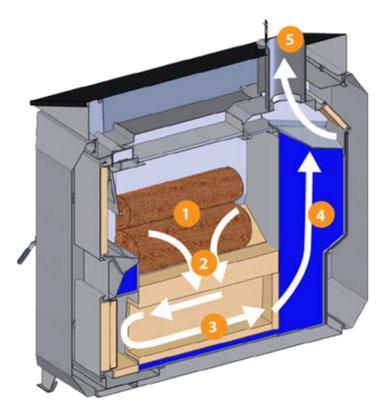
- EPA Voluntary Emissions Reduction Program
 - 90% lower emissions
- Low emissions → higher efficiency
 - Average efficiency of qualifying cord wood boilers ~ 70%
- Many states restricted sales EPA certified models
 - White tag / Phase 2
- EPA information
 - http://www.epa.gov/burnwise/
 - List of qualifying outdoor wood stoves
 - http://www.epa.gov/burnwise/owhhlist.html
- New EPA proposal
 - Emission from 0.32 to 0.06 lb/MBTU (2015)

19

AGRICULTURAL & LIFE SCIENCES

versity of Wisconsin-Madisor

White Tag


- Outdoor Wood Boilers
 - Graphical comparison to standard limits
 - Maximum output rating
 - 8-hour output rating
 - 8-hour average Eff.
 - Annual Efficiency
 - Fine particle emissions

Gasification Technology

- 1 Firebox fire brick lined
 - Absorbs heat to maintain higher combustion temperatures
- 2 Fire nozzle
 - Entrance to lower burn chamber
- 3 Secondary Burn Chamber
 - Burns at 2000 °F
 - Low smoke
- 4 Heat Exchanger
 - Separate from fire box
 - Higher heat transfer
- 5 Chimney Exhaust

Source: www.profab.org

Pellet Boiler

Boiler

100

Boiler

Controls

Ash Bin

Wagon

Ash Auger

Credit: Josh Kaurich

Pellet Supply Bin

Feed Auger

Pellet / corn furnace ~165,000 Btu

23

SCIENCES

Credit: Vern Grubinger, University of Vermont

Anatomy of a pellet Boiler

Bottom Feed

Top Feed

Source: www.profab.org

24

AGRICULTURAL & LIFE SCIENCES

University of Wisconsin-Madison

Pellet/corn furnaces

Credit: Vern Grubinger, University of Vermont

Keep your old system for backup and COLD nights!

Advantages of Pellet Boilers / Furnace

- Fuel homogenous
- Variety of fuel pellet sources
 - Wood
 - Paper
 - Biomass
- Adjustable burn rate
 - Feed auger speed
- Low emissions
- High efficiency
 - 80% typ., up to 90+%
- Low labor automatic stoking and ash removal

Credit: Focus on Energy

Wood Chip Boiler

- Higher capital investment
- Higher maintenance
- Many moving parts
- Suited for larger applications
- Uses low cost product
- Labor to re-fill charge hoppers required daily
- Wood chips 25 to 50% moisture
- Need storage for tractor trailer load++ of chips
- Availability of supply??
- Capacities ~ 500,000 Btu and greater

Source:www.danvillek12vt.org

Wood Chip Feed System

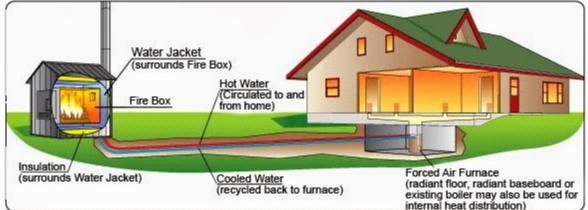
Storage bin with walking floor

Barron High School, Barron, WI

Stand Alone Stoves

- Advantage
 - Lower cost
 - Easy to install
 - Fast payback
 - Supplemental heating
- Disadvantage

Learning for life



- Hopper size may be too small to last all night
- May not be thermostatically controlled overheating
- Heat distribution not optimal
- Low Btu output ~ 30,000 to 70,000 Btu/hr

How is the heat distributed?

Source: www.thermpex.com

AGRICULTURAL & LIFE SCIENCES University of Wisconsin-Madison

30

Bench heating system

Credit: Vern Grubinger, University of Vermont

Supply and Return piping

Small heating tubes run in loops on growing bench

3,000 gallon tank stores heated water, which allows furnace to run hot / cycle less

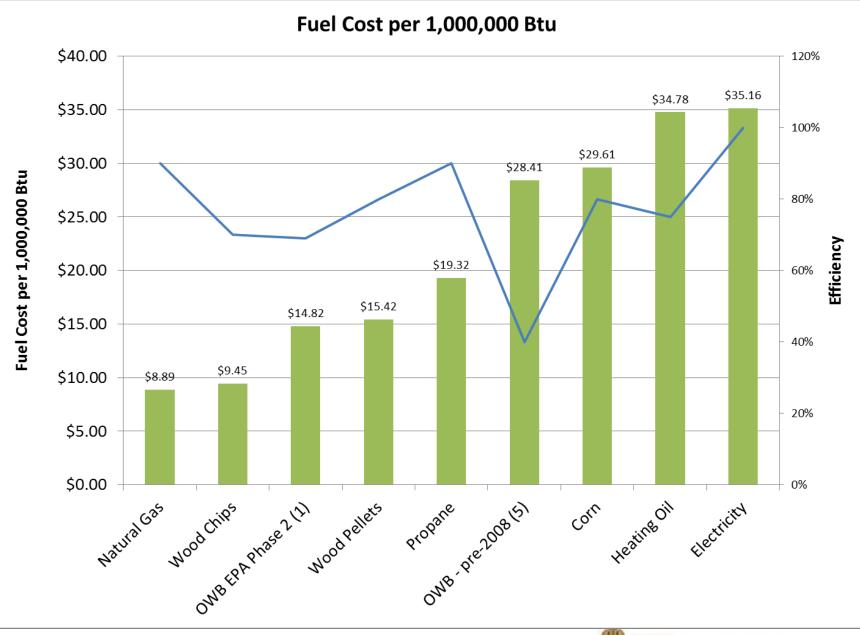
Credit: Vern Grubinger, University of Vermont

32

Fuel Comparison

Fuel Type comparison					
Fuel Type	Energy content	Seasonal Efficiency (2)	Unit cost USD (4)	units	Cost per 1,000,000 Btu
Natural Gas	100000/therm	70-94% (90%)	0.80	Therm	\$8.89
Wood Chips	3780 (50%) - 6190 (25%) / lb	50 - 75% (70%)	50	ton (50%)	\$9.45
OWB EPA Phase 2 (1)	22,000,000 per cord (3)	69%	225	cord	\$14.82
Wood Pellets	15400000 per ton	70-85% (80%)	190	ton	\$15.42
Propane	92000	70-94% (90%)	1.60	gallon	\$19.32
OWB - pre-2008 (5)	22,000,000 per cord (3)	40%	250	cord	\$28.41
Corn	380,000 per bushel (@ 15% moisture)	70-85% (80%)	9.00	50#	\$29.61
Heating Oil	138000	70-85% (75%)	3.60	gallon	\$34.78
Electricity	3413 / kWh	100%	0.12	kWh	\$35.16

1) Meets EPA Phase 2 emissions requirement


2) (XX%) Efficiency value used to calculate "Cost per 1,000,000 Btu"

3) 6500 Btu/pound (20% moisture)

4) Fuel costs in Madison, WI for 2013-2014 heating season delivered to point of use. Does not include any storage costs

5) Typical Pre-2008 outdoor wood-fired boiler (Does not meet EPA Phase 2 requirement)

COLLEGE OF AGRICULTURAL & LIFE SCIENCES University of Wisconsin-Madison

Equation for Table

- \$ / Mbtu = <u>\$ per unit x 1,000,000</u>
 Energy content/unit x Efficiency
- Unit Trading unit (gallons, tons, cords)

Propane @ \$2.70/gallon

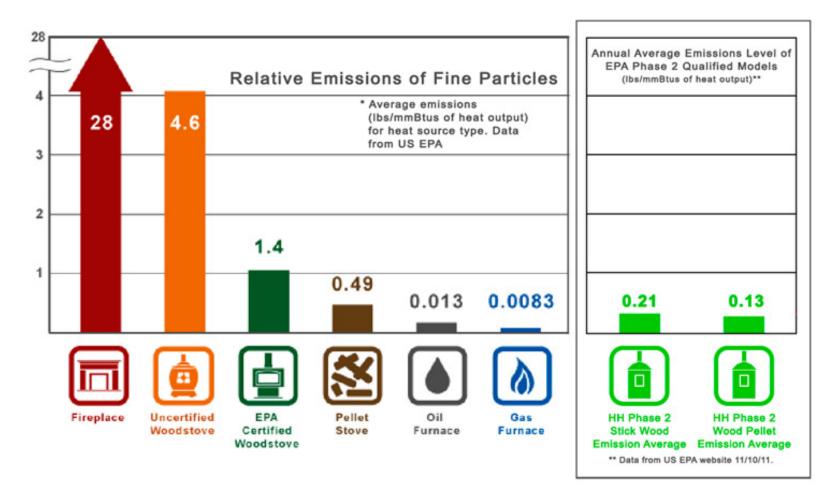
- \$ / MMbtu = \$2.70 per gallon x 1,000,000
 91,600 Btu/gallon x 0.90
 - = \$ 32.75 / MMBtu

Sizing a heating system

- What percent of the heating do you want to replace?
 - Full Replacement
 - Some proportion of total heating
 - 90%, 80%, 50%, Other?

Sizing a heating system

- Closer to 100% = longer payback
 - 100% capacity only used a few hours per year
 - 50% to 80% likely good target to meet average needs
- Biomass systems designed to run continuously
- Use Thermal Storage to smooth out peaks and valleys of use.

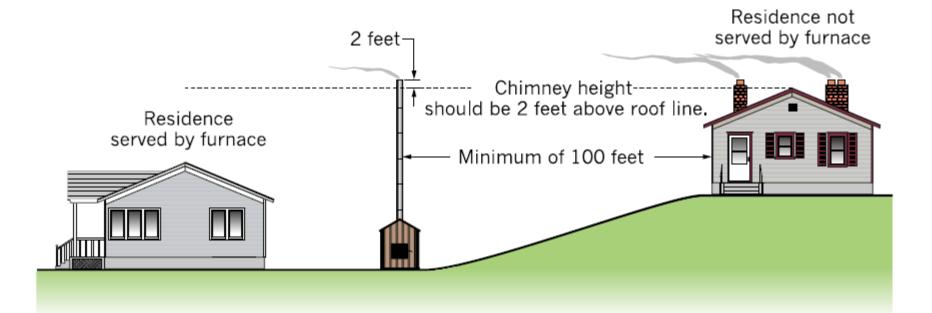

Smoke Emissions – Why Care?

- Contains
 - Fine Particle matter (PM2.5)
 - Asthma attacks, cancers
 - Carbon Monoxide
 - Nitrogen Oxides
 - Greenhouse Gas
 - Volatile Organic Compounds
 - Carcinogens
 - Odors
 - ~ 100 different compounds
- Smoke = Unburnt Fuel \rightarrow lower efficiency
 - Less Smoke →Less wood

Fine Particle Emissions

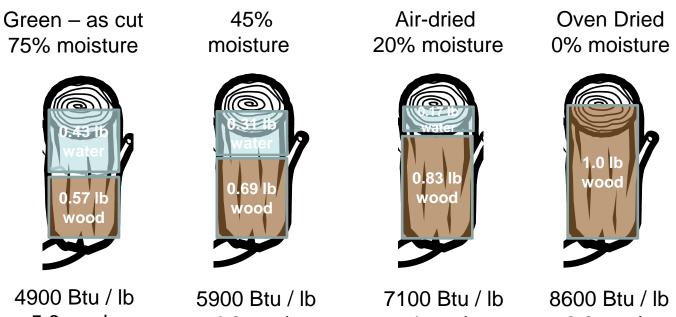
Firebox Management

- Only burn dry, seasoned firewood
 - 6" wedge or smaller
 - Wet wood is a waste!
 - Lower firebox temperatures
 - Smoke
 - Creosote Formation
 - Don't burn trash, painted or treated wood
 - Foul odors
 - Toxic air pollutants


Firebox Management

- Don't overload firebox
 - Only enough for next 8-12 hours
 - Smaller amounts reduces smoke potential
- Don't let fire smolder
 - Heat not needed put out fire
- Clean ash pan regularly
 - Ash can obstruct air intake vents
 - Use metal containers for storing or transporting ash
- Clean chimney regularly
 - Reduce risk of chimney fires

Firebox Management


- Chimney height
 - 2 feet higher than highest building within 300 feet

Why wood moisture is important

Net Energy of wood based on % moisture

5.8 cords

4.8 cords

4 cords

3.3 cords

Wood Moisture Tester

- Cost ~ \$30
- Method
 - Split wood to expose fresh wood
 - Press meter pins into fresh wood
 - Take several readings per piece
 - Test several pieces of wood
 - Average results

Case Study #1

- Freestanding gothic greenhouse
 - 30' x 96'
- Double poly glazing
- Used Feb to June veg. & bedding plants
- Currently has two 200,000 Btu power-vented unit heaters (78% Eff.)
- Propane fuel \$2.00 /gallon
- Set point temperature: 70° F day, 60° F night
- Location: Madison, WI

Option A

- Residential/shop pellet stove
 - Rated output 70,000 Btu/hr
 - Supplement heating
 - operated mainly at night
 - No Thermostat
 - Installed cost \$4350
 - Stove efficiency = 80%
 - Wood pellet cost \$4.20 / 40 lb bag (\$210 / ton)

Source:www.bixbyenergy.com/sto ves/index.php

46

Option B

- Thermostatically controlled pellet furnace
 - Heating capacity range: 10,000 to 160,000 Btu/hr
 - Furnace efficiency = 80%
 - Air ducted directly into the greenhouse above plants
 - Located at one end of greenhouse
 - Installation cost = \$6030
 - Includes 14 bushel fuel bin
 - Bagged pellets assume
 - Avoid cost of bulk storage
 - \$4.20 / 40 lb bag

Option C

- EPA Phase 2 outdoor wood boiler
 - Average capacity (8 hour period) 160,000 Btu/hr
 - Two water to air heat exchangers (HE) in center of greenhouse to distribute heat
 - Thermostatically controlled
 - Pump to HE turns on when greenhouse requires heat
 - Installed cost \$13,050 (boiler, all piping, heat exchanger)
 - Average boiler efficiency = 75%
 - Full Cord of Wood \$150/cord (assuming self harvested)

Option D

- Same as Option C except non EPA qualifying boiler
- Installed cost \$11,634
- Estimated Efficiency = 40%

Average Night Heating Requirements by Month

Month	Heating requirements Btu/day	Approx. average hourly heating - Btu/hr
February	1,643,818	136,985
March	1,119,650	93,304
April	732,940	61,078
May	343,839	28,653

- Day-time heating, on-average, are fully met by solar radiation except for February
- Average February day-time heating 12,800 Btu/hr

How much heat can Biomass provide?

- Option A 100% of heating down to ~40F
 - Estimated 50% reduction in propane use
- Options B, C & D 100% of heating down to ~ 10F
 - Average monthly minimum Feb temperature
 14.3° F
 - Based on Average Options B, C & D can supply 100% of needs
 - Reality estimated 20% will be supplied by propane

Summary of Biomass Heating Options

Baseline: 1592 gallon propane @ \$2.00/gal = \$3184 / year

Heating System	System Cost	Biomass Quantity	Biomass Energy Cost*	Propane (gallons)	Propane Cost	Total Savings	Simple Payback (years)	
A) Residential pellet stove	\$ 4350	282 40# bags	\$ 1184	639	\$ 1278	\$ 722	6.0	
B) Pellet furnace	\$ 6030	355 40# bags	\$ 1491	318	\$ 636	\$ 1057	5.7	
C) Outdoor wood boiler-EPA Certified	\$ 13050	6 cords	\$ 900	318	\$ 636	\$ 1648	7.9	
D) Outdoor wood boiler	\$ 11634	10 cords	\$ 1500	318	\$ 636	\$ 1048	11.1	
* \$4.20 per 40 pound bag: Cord wood @ \$150/cord								

* \$4.20 per 40 pound bag; Cord wood @ \$150/cord

Case Study #2

- Gutter-connected greenhouse
- 33,000 square feet
- Double Poly film glazing roof and walls
- Year-round production
- Heating system In-floor heating with unit heaters for peaking on cold nights
- Fuel: Propane @ \$2.00 / gallon
- Baseline energy use 85,581 gallons LP gas
 - \$ 171,162 annual heating cost
- Cord wood boiler was not considered
 - Increased labor, limited area for fuel storage

Option A

- Meet 100% of heating requirements
 - Two pellet boilers 3.5 MBtu/hr & 1.5 MBtu/hr
 - Minimum of 4.2 MBtu to meet -20°F design temperature
 - Average efficiency = 78%
 - Use smaller boiler during spring and fall months
 - Large boilers hard to throttle for low demand
 - Estimated 5% of season would use propane heaters
 - Bins for bulk delivery of pellets
 - Installed Cost: \$291,000

Option B

- Boilers sized to meet average heating requirement (~80%)
 - Two pellet boilers 2.5 MBtu/hr & 1.0 MBtu/hr
 - Use smaller boiler during spring and fall months
 - Large boilers hard to throttle for low demand
 - Estimated propane use 20%
 - Bins for bulk delivery of pellets
 - Installed Cost: \$211,000

Pellet Boiler

Pillo

1.1 k

Credit: Josh Kaurich The Flower Farm Eau Claire, WI

Summary of Options

Option	Capital Cost	Tons of Wood Pellets	Wood Pellet Cost *	Propane Cost	Energy Savings	Simple Payback years
A	\$291,000	465	\$82,770	\$8,558	\$79,834	3.6
В	\$211,000	392	\$69,776	\$34,232	\$67,154	3.1

* Bulk Wood pellet cost - \$178 / ton in 22 ton loads

57

Summary

- Energy efficiency options First!
 - High Efficiency Furnace, insulation, windows
 - Better return on investment
- Purchase Efficient Appliances > 75%
- Look at complete economics of all options
 - Include labor and market costs
 - Higher efficiency sometimes costs more
- Firebox management No/low smoke
- Burning wet wood is a waste! Don't use it.

Resources

- U of Wisconsin Extension Bulletins
 - Wood Heating Appliances for Home and Businesses, GWO066
 - Biomass Energy for Heating Greenhouses, A3907-04
 - Biomass Heating in Greenhouses: Case Studies, A3907-05
 - http://learningstore.uwex.edu/Energy-Conservation-C29.aspx
- Pellet Fuels Institute www.pelletheat.org
 - Educational material, pellet manufacturers list
- Wood-Chip Heating Systems, T.M. Maker, Biomass Energy Resource Center, Montpelier, VT 2004.
 - http://www.biomasscenter.org/pdfs/Wood-Chip-Heating-Guide.pdf
- Biomass for combustion calculator
 - www.ruralenergy.wisc.edu/esa

Questions

This presentation was develop by: Scott Sanford Sr. Outreach Specialist Rural Energy Program University of Wisconsin-Madison

Comments and suggestion should be directed to sasanford@wisc.edu

The contents of this presentation can be used in whole or in part for greenhouse grower education.

