Robot barn research

- During 2014-2015 44 barns investigated
 - 1-8 robots
 - Different brands (Lely, deLaval, GEA, Sac, Merlin)
 - Finland, Åland Islands, Sweden, Denmark, Holland, United States
- Measuring working time during morning tasks
 - Also about 40 separate questions, “data of the day”
- Self paid
- Help from Dairylogix (Canada) W University (US) and Dronten Ag University (Holland)

We have measured:

- Labour time in different places (1 minute accuracy)
- Steps with pedometer
- Neck rail position in stalls
- Amount of bedding
- Amount of light
- Air speed in different places
- Observations in general
Questionary:

- 70 questions after timing morning tasks
- Questions about production numbers and daily/weekly/monthly routines
- Farmers own analysis of good and bad things in the barn
- In some farms timelapse videotaping

Goals:

- As a barn designer to understand how a robot barn works in practice
- To find development areas and factors between labour efficiency, costs and production
- To find things in the barn which are actually not needed
- To give ideas to survey farms to "finetune" production and facilities
- Later to develop a complete new method to do functional design

Labour Efficiency in Robotic milking

(4dBarn Farm Survey made by Millers)
Labor time and number of cows in 4dBarn study farms

Working time / cow / day vs daily milk production?

- no connection!

Article in Hoard’s Dairyman (May 25, 2016)
Using LEAN-concept to analyze barn’s functionality and production processes,

Avoid:

1. Transport (logistic design, where to locate different working areas)
2. Inventory (Calving interval, lots of calvings in short period)
3. Idle time (feeding, tending / Cleaning robot / stalls is wrong time, waste waiting)
4. Over production (for example too much heifers)
5. Over Processing (over cleaning floors, robots)
6. Bad quality (waste milk, waste food)
7. Operation motion (handling and robots, wrong design and equipment, right tools in right place)

THIS IS WHY WE START BARN DESIGN BY PLANNING THE ROUTINES
Boosted – robot barn troubleshooting concept for existing robot barns

- A visit by two 4dBarn experts during morning duties
- Measuring labour times in different tasks
- Recording cow’s behaviour with 360-degree cameras
- Measuring light, amount of bedding, cleanliness and hock scores
- Analysing the data with other 4dBarn experts
- Giving a report about the most important areas to develop cow performance and labour efficiency

Measuring labour times and questionary

- Measuring 40 most important daily tasks done during morning duties
- 40 questions about the most important production numbers and ways of barn management
- Observations and measurements of cow comfort (amount of light, hock lesion score, cleanliness score)

Boosted report

- Measuring 40 most important daily tasks done during morning duties
- 40 questions about the most important production numbers and ways of barn management
- Observations and measurements of cow comfort (amount of light, hock lesion score, cleanliness score)
Time used in feeding

One batch for 60 cows ~ 1 hour 30 minutes
Two batch for 300 cows – 1 hour 15 minutes

Time used in feeding

Time used with calves

It takes average 3 minutes/calf/working shift
Are robots only for the small farms?

ADSA Book Chapter 2016

- Automatic milking in large dairy herds (2016)
 - Authors Jouni Pitkäranta and Jack Rodenburg
 - Included a mini survey and visits to farms

Farms in a survey

- The 9 large robot farms located in Denmark (5), Germany (1), Canada (1) and United States (2)
- milked with Lely (5 farms) and DeLaval VMS robots (4 farms).
- These herds milked 360 to 1100 cows (average 644), with 7 to 22 milking boxes (average 12).
- The number of cows per robot ranged from 40 – 63 and averaged 54.5.
Labour Efficiency in surveyed large herds

- Minutes / cow from 2.1 to 4.9 minutes (average 3.6 minutes)
- Litres / labour hour from 502 to 1060 litres (average 640 litres).
- Typically farms in US with 600 – 1000 cows milked in a parlor litres / labour hour can be 350-450 litres.

Labour efficiency thoughts in large robot barns

- More things are being done as daily basis compared to small barns
- More groups -> time used to move animals / change groups
- Distances increase -> more time goes to non-productive walking
- More employees – more full day shifts -> difficult to fill all day to efficient productive work
- Farmers (owners) are ok with shorter days in smaller farms and might also do tasks faster
- Consistency and ability to stay in a barn enables higher production in large barns

Most labour efficient farm in a survey:

- 9 AMS units
- In Denmark
- Average 38 litres (84 pounds)
- 21 000 litres milk / day (46 000 pounds)
- 19.5 labour hours / day
- 1060 litres of milk / labour hour (2330 pounds)
Future thoughts:

• When robots become more popular, shared employees/private maintenance persons between farms?
• Small family robot farms create more income working part time in large robot farms?
• Satellite production units in different locations with shared special needs unit

Key factors to achieve labour efficiency

• Cow comfort!!!
• Not too many cows/AMS unit
• Right gating to fit to working routines
• Well working handling area
• Right type of lay-out and robot orientation

Gating!

• In addition to "catalogue" gates, robot barn needs lots of special custom made gates
• Instead of moving all group in robot barn individual cows or small groups are moved
• Gating slightly increases cost but saves a lot of labour!
• Gate design is a very important phase in a design process
• Gates are just steel, not rocket science
An example 240 cows, av. 90 pounds (41 litres)

- A farm using 3.5 minutes / cow -> 14 labour hours
- A farm using 6 minutes / cow -> 24 labour hours
- Difference 10 hours / day
- 10 hours x 14 usd -> 140 usd / day -> 51 000 usd / year
 -> 766 000 usd in 15 years
Time is money!

Why 4dBarn?
Because we
• design barns with primary goals on labour efficiency and cow comfort
• are an independent company
• have a good understanding about producing high quality milk with robots
• after the project is ready, we analyse and measure the barn and design the next one to be even better

A barn is a tool for making milk. With us you will get the kind of tool that fits your unique way of working and management style.
Robotic milking and labour efficiency

We have visited and recorded labor times over 50 robotic barns in North America and Europe. Our data shows that having a robot in your barn doesn't automatically mean your barn is labor efficient or gives you the production level you have set your goals to. Robot is a machine for harvesting milk, but the milk is made in a barn around it. It is all about the barn design and management around it!

Labour Efficiency in Robotic milking

<table>
<thead>
<tr>
<th>1 robot</th>
<th>3-8 robots</th>
<th>8-12 robots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1500</td>
<td>2000</td>
</tr>
</tbody>
</table>

Barn Design process

- Big Picture
 - Farmstead plan
- Concept
 - Feeding table location
 - Number of rows
 - Manure system
 - Ventilation system
- Functionality
- Construction design
Design process and economy

- Big Picture (Farmstead plan) gives Your farm a longer lifespan
 - Avoids sidesteps
 - When thinking expansion, always look ahead one or two steps
- Concept determines barn’s investment cost
- Functional design determines barn’s operation cost
 - Labour efficiency but also a big part of cow’s performance
- Construction design just puts this all together

In which phase of design process can we help the customer the best way?

- As early as possible...
- When a farm has made a preliminary decision to build
- Has talked with a bank
- Even before making a decision about robot brand
- Changing the way of thinking from “I like that layout” to “How I’d like to work in my barn”

Working together in design phase

The Farm Adviser
- Adviser knows the farm and its strengths and has deep understanding about the management style of the farm
- Get her/him into the design process not just commenting drawings

The Dealer
- Dealer has the best knowledge about the machinery and its requirements
- It’s also dealers benefit the more functional barn is

Farmer gets the best barn when we all work closely together
The Farmer and 4dBarn

- The process:
 - Increase understanding of a farmer what kind of working place She / He is building
 - Committing the farmer to decisions made in a design process - not changing mind (feeding, ventilation, grouping...)

- The end result
 - Farmer has a right tool for producing milk with high labour efficiency and cow comfort

4dBarn Farmer’s Stories

What thoughts / differences we see in AMS barn design in United States?

- Price of AMS unit significantly higher in US
 - Why? Why? Why?
- Housing barn price / square foot a lot higher in robot barns than with parlor
 - With AMS barn will have a lot of other automation
 - Does it need to be so?
- Robot brand chosen before lay-out
 - All three main robot brands fit pretty much to same lay-out
- Tighter economy pushes to maximize robot capacity
 - But then a high risk to labour efficiency and production / cow to go down...
We will make it happen.

Thank You!

www.4dbarn.com
www.facebook.com/4dbarn
www.twitter.com/4d_barn
Youtube: 4dbarn
info@4dbarn.com