Late Summer Cover Crops after Small Grains or Vegetables

University of Wisconsin – Madison, Nutrient and Pest Management Program

Mike Ballweg

University of Wisconsin-Madison, Division of Extension, Sheboygan County

Webinar Outline

Moving Toward Soil Health – Maximizing the Growing Season Jamie Patton – NPM

Cover Crops Following Short Season Crops – Common Species, Mixes, Management Tips

Daniel H. Smith – NPM

The Power of Legumes

Mike Ballweg – Extension Sheboygan County

Small Grains for Forages and Covers – Management, Varieties and Yields

Kevin Shelley – NPM

Moving Towards Soil Health – Maximizing the Growing Season

Jamie Patton

University of Wisconsin – Madison, Nutrient and Pest Management Program

Late Summer Crop Harvest... **The Potential**

• The potential of bare soil...

Nutrients

Late Summer Crop Harvest... The Potential

• The potential of late summer cover crops...

Plenty of Precipitation to Come... Protect and Store

Average Monthly Rainfall (inches) – Stevens Point, WI

Total average rainfall – 33 inches

Jan 1 to July 31 – 19.2 inches Aug 1 to Dec 31 – 13.8 inches Aug 1 to May 1

21 inches of precipitation 58 events

Average Monthly Rainfall Totals – Stevens Point, WI - NOAA

Cover Crops Following Short Season Crops – Common Species, Mixes, Management Tips

Jamie Patton and Daniel H. Smith

University of Wisconsin – Madison, Nutrient and Pest Management Program

So Many Cover Crop Species... What do I Plant?

- Matches goals for:
 - Economic outlay
 - Cost share requirements
 - Cover cropping goals
 - Management options
 - What equipment do you have?
 - Are you going to use herbicides for termination?
 - How much time for management do you have?
 - How comfortable are you with risk?
 - Do you have manure to apply?
 - ...

Plenty of Water and GDDs... Opportunity for Diverse Mixes

- Soil cover during April-June
- Diversity in:
 - Root architecture
 - Plant exudates
 - Temporal growth
 - C:N ratios

endless

- Grasses
 - Cereal grains
 - Grasses
- Legumes
 - Clovers
 - Vetch
 - Peas/beans
- Broadleaves
 - Brassica
 - Sunflowers

Get the Basics Right... Use Your Resources

- Extension
- Demo Farms/Farmer-led Watersheds
- Agronomists
- Co-op/Seed Representatives
- Midwest Cover Crop Council
 - <u>http://mccc.msu.edu/covercroptool/covercroptool.php</u>

	繎	٨	lidw			con															Tool	
SEW EPDATET HOVER OVER COVER CROP, CLICK TO REVIEW THE INFORMATION SHEET.	Location Inform		-	Crigita In	teriolat	-	Port			Alte	onine (latura	estica	1								1
	Cash Crop Wheat 👻 Plant Dates								Harvest Dater 07/25/2020													
	Geal #1 Forag					ned N		Fight	ler.		×	Geal		Veed					~			
Attribute Ratings: 0.2 2-Good, 3-Very Good,		Rallable Establishment Freeer Rick to Establishment Establishment Establishment Cash Crop Graving Period: Requires Aerial Seeding or Intersteeding of Cover Crop																				
Wood Fighter Erestion Fighter Mechanical Forage Harvest Value NONLEGENIES	E e	1	1	ž	din 1	100	-	Aug 15	-	Sep 15	0011	Oct 15	Nevi	Nev 15	Dest	Dec 15	-	1	Febit	Feb.15		

Cover Crop Seeding Methods After Small Grains

Seed as Soon as Possible Watch Seeding Depth!

A Month After Seeding

Photo: Ted Bay

Volunteer wheat control may be desired (alternative: use volunteer wheat as part of cover crop mix). However, we do not recommend waiting for volunteer wheat emergence and termination to seed a cover crop.
 Volunteer wheat may be a challenge!

A Few More Considerations Seeding, Tillage, Manure

A Few More Considerations Herbicide Persistence/Carryover

- May result in cover crop damage and stand failure
 - Can be avoid by careful selection of herbicides
 - Chemical properties of the herbicide
 - Rate of application
 - Soil pH
 - Organic matter content
 - Amount of surface plant residue
 - Temperature
 - Rainfall
 - Microbial degradation

Nontreated

Example of herbicide carryover

Influence Factors

Herbicide Rotational Restrictions for Cover and Forage Cropping Systems

No calification is remedied to the random spectra data constraining using control control control and buildings building the time of the random spectra data is the time of the random spectra data. The short control control

Herbicide Carryover

is over one to a simulative term model guide. They near term that a stability well, stability and it can ensure that the stability of the sta

Cover Crop vs. Forage Crop

A regis character as new core above, the mean is thereast in the same ray is not defined to breefly the design equiparts seen to a set of the same ray of the same ray is not defined by the same the set. The same ray of the

Citation: Walsh, Joseph D., Michael S. Defelice, and Barry D. Sims. "Soybean (Glycine Max) Herbicide Carryover to Grain and Fiber Crops." Weed Technology 7 (1993): 625-32

A Few More Considerations Termination

A CONTRACTOR OF	·									
		Winterkill	Crimping	Mowing	Tillage	Herbicide				
Brassica	Canola/Radish	Maybe	No	No	Yes	Glyphosate				
	Red Clover	No	No	No	?					
Legume	Crimson Clover	Maybe	No	No	Yes*					
	Berseem Clover	Yes	No	No	Yes*	Glyphosate + dicamba				
	Winter Pea	Maybe	No	Yes	Yes*	or 2,4-D				
	Sweet Clover	Maybe	No	No	?					
	Hairy Vetch	No	Yes	No	Yes*					
	Annual	Maybe	No	No	Yes*					
Grasses/	Ryegrass					Glyphosate 4.5 lb ae				
Small	Spring Barley	Yes	No	Yes	Yes	per gal, 16-32 fl oz per acre				
Grains	Winter Wheat	No	Yes	Yes	Yes*					
	Winter Rye	No	Yes	Yes	Yes*					

Tillage Note- May require multiple passes and tillage should fully incorporate cover crop to prevent regrowth.

The Power of Legumes After Short Season Crops

tension

OF WISCONSIN-MA

Mike Ballweg

University of Wisconsin – Madison, Division of Extension, Crops and Soils Educator Sheboygan County

Matt Ruark

University of Wisconsin – Madison Soil Science Department

Berseem, Crimson Clovers, Barley & No Cover Crop 3 year study – Sheboygan County

- Soil Kewaunee Silt Loam
- Planting Dates: August 12 15, 2014, 2015, 2016
 - Berseem clover (10 12) lbs./ac
 - Crimson clover (10 -12) lbs./ac
 - Barley 60 lbs./ac
- Sethoxydim application to clover and no cover treatments
- Biomass harvesting early November all years (after a hard freeze - end of growth)
- Nitrogen fertilizer, broadcast urea with Agrotain[®]
 8 N rates (0, 40, 80, 120, 160, 200, 240, 280 lbs./ac
- Solid stands to help understand the contribution to cropping system

Crimson- 2015

Berseem -2015

Crimson Clover

Crimson Clover—Spring Residue

Barley Crop Residue

No Cover Crop

April 30, 2015

Cover Crop DM Yields After Wheat

Barley Cover Crop

Barley 40 lbs – N/ac in AGB C:N 35

> Mike Ballweg UWEX - Sheboygan County November 9, 2016

Carbon/Nitrogen Ratio

November Biomass Harvest

Carbon/Nitrogen Ratio

Both crimson and berseem clovers provide yield benefits -2015 - Sheboygan County

2015 Corn Yields Following Covers

2017 Corn Yields Following Covers

2016 Corn Yields Following Covers

2015 corn yields showed an increase of 9% (15.5 bu./ac) when following Berseem and Crimson Clovers compared to no-cover crop
2016 showed a very similar yield trend with a 7% (13.4 bu./ac) increase when corn followed clovers as compared to no cover crop.
The 2017 yield advantage when corn followed clovers was 4.3% (9 bu/ac) when compared to not covers.

Berseem, Crimson, Barley Mix

10 10

14 14

12

18

61

18

11

8 22

5 0

14

2 23

Berseem: 4 lb /ac Crimson: 4 lb/ac Barley: 40 lb/ac

Planted 8/15/2014 DM on 11/12: 1.6 ton/ac

Berseem and Crimson Mix

Berseem: 6 lb/ac Crimson: 6 lb/ac

Planted 8/15/2014 DM on 11/12: 1.4 ton/ac

Corn yield response to winter cover crops based on cover crop species and region. Miguez and Bollero (2005). Results adapted by: Heggenstaller, DuPont Pioneer

In Summary - Things to consider

- Corn following annual clovers yielded 10 15 bu/ac (6.8%) more than no cover crop...rotational benefits.
 - studies show ~ a 10% yield increase when corn follows alfalfa due to rotational benefits
- Corn yields following barley were lower yielding 2 of 3 years. N immobilization
- Greater amounts of carbon (biomass) may result in immobilization of N thus requiring additional N for optimal yields.
- N immobilization (following barley) may have been lessen if no-tilled into the barley residue....no data

Remember the Inoculant

Thank You

Acknowledgments

- Matt Ruark, UW-Madison, Soil Science Department
- Jamie West, Research Specialist, UW-Madison Soil Science Department
- Richard Proost, UW-Madison, NPM
- Many UW-Madison students

Summer Planted Spring Cereal Grains for Fall Cover and Forage

Kevin Shelley

University of Wisconsin – Madison, Nutrient and Pest Management Program

Summer Planted Spring Cereal Grains for Fall Cover and Forage

- Winter cereal grains (rye, wheat, triticale)
 - Winter hardy with rapid spring growth
 - Vernalization required for stem elongation
- Spring grains yield more for fall harvest
 - Stem elongation occurs
 - Growth continues well into October
 - But they will not over-winter
- Forage yields (biomass) highest in WI forage trials = oats or barley
 - 1.5 to 3.0 TDM per-acre biomass/forage yield

<u>Spring</u> planted cereal grains

Harvest	Crude Protein	NDF
Stage Boot	16-18	52-54
Heading	14-16	56-58
Milk	12-14	59-61
Dough	10-12	59-61

Table 2. Average forage quality values for oats harvested

- Fast early-season growth through vegetative stages
- Long-day photoperiod induces flowering
- Yield and nutritional quality optimized at "boot stage," after which there is rapid:
 - Decrease in protein, energy and digestible fiber
 - Increase in un-digestible fiber
 - Increase in yield (of lower quality forage)
- Harvest window = narrow

Summer planted spring cereal grains

- Slower growth through vegetative stages
- Long-day requirement for flowering disrupted
- Cereals undergo hardening process as winter approaches
 - Cellular accumulation of sugars
 - More stable concentrations of fiber (NDF) and energy (TDN)
- Wider harvest window

- Seed oats at 2.5 to 3 bu/acre (80 100 lbs/acre)
 - \$25 \$45 per-acre seed cost
- Drill 1-2" deep or broadcast and lightly till-in.
- Requires **40-60 lbs N**, 20 lbs P₂O₅, 90 lbs K₂O
 - \$25 \$35 per acre fertilizer N cost, or
 - Manure application 5000-7000 gal or 25 tons per-

Summer planted spring cereal grains

Effect of planting date and variety on yield of fall-grown oat (Marshfield, WI; 2007-2009)

Source: Coblentz, Wayne, USDA ARS Dairy Forage Research Center

Oat cultivar yields from mid-August planting: 2-year means at Prairie du Sac, WI

Coblentz, Wayne and Mike Bertram, 2012. Fall grown oat forages: Cultivars, planting dates and expected yields.

Variety according to planting date

- Objective: maximize forage/biomass yield, but not heading
- Central WI
 - July 20 to August 5 late maturing or forage-type varieties.
 - August 5 to 15 plant earlier maturing grain-type varieties

Fall forage oats – enterprise budgets

Yield TDM/acre	1.5 ^a	2.0 ^a	2.5 ^b	3.0 ^b
Value \$/TDM	120	120	130	130
Value (\$/acre)	180	240	325	390
Seed (100 lbs)	28	28	42	42
Planting	20	20	20	20
Nutrient inputs	52	56	60	64
Harvest ^c	70	89	108	127
Interest, pre-feedingd	3.39	3.85	4.59	5.05
Cost (\$/acre)	173	196	234	258
Return \$/acre	7.11	43.65	90.91	132.45

- ^a Mid-maturity, grain type variety
- ^B Late maturity, forage type variety
- ^c Mowing =\$12.50/acre + \$38/TDM chopping, hauling bagging
- ^d 4% annual operating for 6 mos.

Resources / References

- Ballweg, Michael, 2018. Berseem and Crimson Clovers after Winter Wheat. Cover Crops in Wisconsin – Nutrient Management Research. <u>https://fyi.extension.wisc.edu/covercrop/files/2018/10/WICC-Berseem-and-Crimson-Clovers-After-Winter-Wheat.pdf</u>
- Cates, Anna, 2018. Cover Crop Effects on Net Ecosystem Carbon Balance in Grain and Corn Silage. Cover Crops in Wisconsin – Nutrient Management Research. <u>https://fyi.extension.wisc.edu/covercrop/files/2018/10/WICC-Cover-Crop-Effects-on-Net-Ecosystem.pdf</u>
- Coblentz, Wayne and Mike Bertram, 2012. Fall grown oat forages: Cultivars, planting dates and expected yields. UWEX Focus on Forage. <u>https://fyi.extension.wisc.edu/forage/fall-grown-oat-forages-cultivars-planting-dates-andexpected-yields/</u>
- Coblentz, Wayne and Mike Bertram, 2012. Fall grown oat forages: Unique quality characteristics, 2012. UWEX Focus on Forage. <u>https://fyi.extension.wisc.edu/forage/fall-grown-oat-forages-unique-quality-characteristics/</u>
- Coblentz WK, Akins MS, Cavadini JS, 2020. Dry matter yield and nutritive value of early- or latematuring spring wheat, spring barley, and oat cultivars planted in late summer. *Crop, Forage & Turfgrass Mgmt*. 6:e20034. <u>https://doi.org/10.1002/cft2.20034</u>
- UW-Nutrient and Pest Management Program Cover Crop Resources <u>https://ipcm.wisc.edu/covercrops/</u>