Focus on Forage Optimizing forage production in Wisconsin

Managing for High Quality Corn Silage

Top Ten Corn Silage Production Strategies – Jerry Clark, Extension Chippewa County

Panel Discussion - Mike Jenson and Carlyle Westendorp, 2020 World Forage Superbowl winners in corn silage

Fine Tuning Conservation – Ashley Blackburn, Nutrient and Pest Management Program

Wednesdays – January 13 through March 3 – 12:30 to 1:30 pm Register at <u>https://go.wisc.edu/334pqz</u>

Webinar Recommendations

- Please keep microphones and videos off
- Enter questions in chat at any time
- If you'd like to change your Zoom screen view, you can click on "View" on the upper right hand-side for options.
- CCA Credits are available QR Code available at end of webinar
- If you have technical difficulties, post them in the chat or email Scott Reuss at <u>scott.reuss@wisc.edu</u>

Top Ten Corn Silage Management Strategies

Jerry Clark Division of Extension University of Wisconsin-Madison Chippewa County

Management Strategies

- 1. Hybrid Selection
- 2. Harvest Timing
- 3. Trade-off exists between yield and quality
- 4. Early Planting Date
- 5. Increase Planting Population

- 6. Pest Management
- 7. Adequate Soil Fertility
- 8. Crop Rotation
- 9. Cut at right height, right length, and process kernels
- 10. Fill storage rapidly, pack well, cover quickly

Sources: Dr. Joe Lauer, University of Wisconsin-Madison Department of Agronomy

#1a Weather

✓We can't control

- ✓ Spring dry enough for early planting, wet enough to promote emergence, activate herbicides
- ✓ Timely rain in summer, sunshine, warm days, cool nights
- ✓ Fall mild weather to slow dry down, dry to not rut soils

Figure 1. Normal Pattern of Corn Forage and Grain Development in Wisconsin.

#1 Hybrid Selection

- ✓Yield
- ✓ Forage quality
- ✓Moisture
- ✓Lodging resistance
- ✓ Pest Resistance
- ✓ Specialty genes

 (management, markets, etc.)

#1 Hybrid Selection

Sion Y OF WISCONSIN-MADISON Figure 4. Relationship between Milk per Acre and Milk per Ton of corn hybrids in North Central Wisconsin during 2020.

Milk per Ton (lb/T)

#1 Hybrid Selection

What makes a good forage?

- ✓ High yield
- ✓ High energy (high digestibility)
- ✓ High intake (high fiber)
- ✓ High protein
- ✓ Proper moisture at harvest

✓Too wet

- ✓ Reduced yield
- ✓ Souring
- ✓ Seepage
- ✓ Low intake by dairy cows
- ✓ Too Dry
 - ✓ Reduced yield
 - \checkmark Cause molds to develop
 - ✓ Lowers digestability

✓ If timing is missed, all for nothing?

 ✓ Note tasseling (silking) date
 ✓ Kernels at 50% milkline 42-47 days after silking

Time Span of Vegetative and Reproductive Stages During the Life Cycle of Corn

If timing missed, season is all for nothing

Kind of like the double-doink

1. Paid to grow the crop

2. Now missed the quality window

https://www.youtube.com/watch?v=BICgLiBy460

Figure 1. Normal Pattern of Corn Forage and Grain Development in Wisconsin.

Extension UNIVERSITY OF WISCONSIN-MADISON

#3 Tradeoff exists between yield and quality

#4 Early Planting Date

- Priceless
 - ✓ "Sets up the season"
- Focus on seedbed and date not soil temperature
- Follow local extension recommendations
 - ✓Crop insurance requirements
- Disadvantages of early planting
 - Seedling diseases
 - Late spring frost

#4 Early Planting Date

Forage yield (T/A)

Forage yield (Mg ha⁻¹)

#4 Early Planting Date

#5 Increase Planting Population

- ✓ Most potential to move to new yield plateau
- ✓ Plant densities are increasing with new hybrids
- ✓ Generally 5,000 to 8,000 more seeds per acre for forage than grain

#5 Increase Planting Population

Corn Forage Response to Plant Density

#5 Increase Planting Population

xtension IVERSITY OF WISCONSIN-MADISON

#6 Pest Control

- \checkmark Timeliness is everything
- ✓ Control weeds early
 ✓ Critical periods of competition
 ✓ Timing
 ✓ Wood density
 - ✓Weed density

#6 Pest Control

Insect Management

- ✓ Scout
- ✓ Be timely
- ✓Insects are adapting
 - ✓ Northern Corn Rootworm
 - ✓ Western Corn Rootworm
 - ✓Western Bean Cutworm
 - ✓ European Corn Rootworm

Disease Management

- ✓ What is good for the crop is good for the pest
- ✓ Scout for
 - ✓ Tar spot
 - ✓Northern Corn Leaf Blight
 - ✓ Ear rots

#7 Adequate Soil Fertility

- \checkmark Not the place to cut costs
- ✓ Soil test and only apply needed nutrients
 - ✓ Use cheapest form of fertilizer per unit of N, P, K (might be manure)
 - ✓ Use manure and legume credits
 - ✓ Don't cut back on N unless already overapplying
 - ✓ Only use micronutrients if soil test recommends

#7 Adequate Soil Fertility

- ✓ Not the place to cut costs
- ✓ Soil test and only apply needed nutrients
 - ✓ Use cheapest form of fertilizer per unit of N, P, K (might be manure)
 - ✓ Use manure and legume credits
 - ✓ Don't cut back on N unless already overapplying
 - ✓Only use micronutrients if soil test recommends

Use Corn N Rate Calculator Apple App Store Google Play

1	Niture	Cuidelines for Com	N				
	- Nitroge	en Guidelines for Corn	0.05	0.10	0.15	0.20	¹ To determine soil yield potenti consult UWEX publication A28
	Soil ¹	Previous Crop		or contact your county agent of			
	loamy: high yield potential soils	Corn , Forage legumes, Legume vegetables, Green manures ⁵	190 ³ 170210 ⁴ 140 125160	165 155180 120 105130	150 140160 105 95115	135 125150 90 80105	 agronomist. ² Includes N in starter. ³ Maximum return to N (MRTN)
	loamy: medium yield potential soils	Corn, Forage legumes, Legume vegetables, Green manures ⁵ Soybean, Small grains ⁶	145 130160 130 110150	125 115140 100 85120	115 105125 85 7095	105 95110 70 6080	 ⁴ Profitability range within \$1/a of MRTN rate. ⁵ Subtract N credits for forage legumes, legume vegetables,
	sands/ loamy sands	Irrigated— All crops ^s Non-irrigated— All crops ^s	215 200230 140 130150	200 185210 130 120140	185 175195 120 110130	175 165185 110 100120	 animal manures, green manure Subtract N credits for animal manures and second year fora legumes.

#7 Adequate Soil Fertility

N:Corn Price Ratio Table*					Price of Corn (\$/bu corn)										
Color for rat	Key g		2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50
(see o	ther side)	0.25	0.10	0.09	0.08	0.08	0.07	0.07	0.06	0.06	0.06	0.05	0.05	0.05	0.05
0.0	lizer	0.30	0.12	0.11	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.06	0.06	0.06	0.05
0.10	fert	0.35	0.14	0.13	0.12	0.11	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.07	0.06
0.7	6 N ir	0.40	0.16	0.15	0.13	0.12	0.11	0.11	0.10	0.09	0.09	0.08	0.08	0.08	0.07
ULL	(N q	0.45	0.18	0.16	0.15	0.14	0.13	0.12	0.11	0.11	0.10	0.10	0.09	0.09	0.08
	(\$/ x(1	0.50	0.20	0.18	0.17	0.15	0.14	0.13	0.13	0.12	0.11	0.11	0.10	0.10	0.09
	of N izer	0.55	0.22	0.20	0.18	0.17	0.16	0.15	0.13	0.13	0.12	0.12	0.11	0.11	0.10
Try our	fertil	0.60	0.24	0.22	0.20	0.18	0.17	0.16	0.14	0.14	0.13	0.13	0.12	0.11	0.11
I rate app	/ton	0.65	0.26	0.24	0.22	0.20	0.19	0.17	0.16	0.15	0.14	0.14	0.13	0.12	0.12
	Se i	0.70	0.28	0.25	0.23	0.22	0.20	0.19	0.18	0.16	0.16	0.15	0.14	0.13	0.13
	e of 1	0.75	0.30	0.27	0.25	0.23	0.21	0.20	0.19	0.18	0.17	0.16	0.15	0.14	0.14
of ES	Pres of	0.80	0.32	0.29	0.27	0.25	0.23	0.21	0.20	0.19	0.18	0.17	0.16	0.15	0.15
			A4												

* to use an online calculator go to http://www.soils.wisc.edu/extension/cropprod.php

n

#8 Crop Rotation

At least two break years are needed to measure a response in the second crop phase ...

#9 Cut at right height and length

Relative change in silage yield & quality at different cutting heights during 1996

#10 Fill rapidly, Pack well, Cover quickly

Figure 4. Porosity vs Harvest Rate for Different Tractor Weight (kg), (Number of Packing Tractors) and Dry Matter Content (%)

Brian J. Holmes¹ Richard E. Muck²

¹ Biological Systems Engineering Department, University of Wisconsin-Madison

² USDA, Agricultural Research Service,
U.S. Dairy Forage Research Center,
Madison, Wisconsin

#10 Fill rapidly, Pack well, Cover quickly

Recommended moisture content (%) for corn stored in various types of storage structures.						
Horizontal Bunker/Pile Silos	70-75%					
Bag Silos	70-60%					
Upright Concrete Stave Silos	65-60%					
Upright Oxygen Limiting Silos	60-50%					

Management Practices

- 1. Hybrid Selection
- 2. Harvest Timing
- 3. Trade-off exists between yield and quality
- 4. Early Planting Date
- 5. Increase Planting Population

- 6. Pest Management
- 7. Adequate Soil Fertility
- 8. Crop Rotation
- 9. Cut at right height, right length, and process kernels
- 10. Fill storage rapidly, pack well, cover quickly

Questions?

Jerry Clark Agriculture Educator Division of Extension jerome.clark@wisc.edu

715-726-7955

