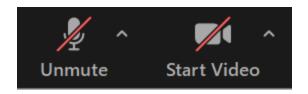
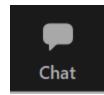
Focus on Forage Optimizing forage production in Wisconsin

Strategies for Achieving Alfalfa Production Goals

Managing Alfalfa in Wisconsin's Changing Forage Landscape – Kevin Jarek, Extension Outagamie County

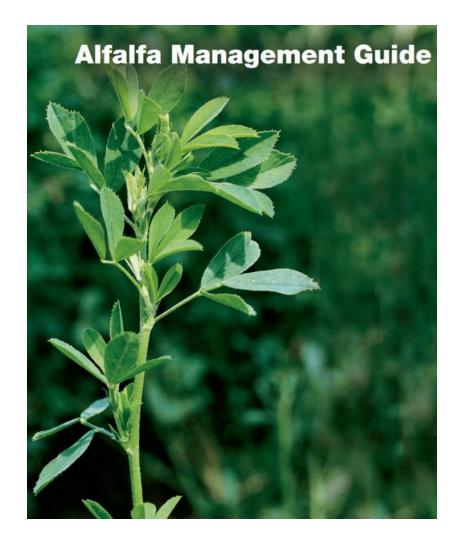

Panel Discussion – Aaron Barclay, 2019 World Forage Superbowl winner and Kevin Jarek

Fine Tuning Conservation – Dan Smith and Jamie Patton, Nutrient and Pest Management Program



Webinar Recommendations

Please keep microphones and videos off


Enter questions in chat at any time

• CCA Credits are available - QR Code available at end of webinar

 If you have technical difficulties, post them in the chat or email Chelsea Zegler at <u>zegler@wisc.edu</u>

Many of Todays Concepts are Detailed in the Alfalfa Management Guide

Not All Areas of the State of Wisconsin Have Been Impacted Equally

However, If You Were Impacted, It has been Severe – Northeast/East-Central Wisconsin

Establishing Alfalfa Production Goals

Specific – What Aspect are You Looking to Improve Upon?

<u>Measurable</u> – How Will You be Able to Develop a Baseline to Compare?

Attainable – What Improvement (Yield, Quality, Etc...) is Realistic?

Relevant – Focus on an Aspect that Has a Huge Influence on Profitability

<u>Time Bound</u> – Have a Beginning and End Time to Ensure Evaluation

Hope is Not a Strategy in 2021

Hay Market Demand and Price Report for the Upper Midwest 1-11-2021

Upper Midwest Hay Price Summary by Quality Grade

Hay Grade	Bale type	Price (\$/ton)			
		Average	Minimum	Maximum	
Prime (> 151 RFV/RFQ)	Small Square	\$240.00	\$160.00	\$320.00	
	Large Square	\$218.00	\$120.00	\$260.00	
	Large Round	\$148.00	\$120.00	\$175.00	
Grade 1 (125 to 150 RFV/RFQ)	Small Square	\$181.00	\$140.00	\$224.00	
	Large Square	\$170.00	\$95.00	\$230.00	
	Large Round	\$128.00	\$90.00	\$190.00	
Grade 2 (103 to 124 RFV/RFQ)	Small Square	\$117.00	\$115.00	\$120.00	
	Large Square	\$136.00	\$85.00	\$180.00	
	Large Round	\$109.00	\$80.00	\$130.00	
Grade 3 (87 to 102 RFV/RFQ)	Small Square		No Sales Reporte	ed	
	Large Square	\$115.00	\$75.00	\$150.00	
	Large Round	\$91.00	\$50.00	\$150.00	

https://fyi.extension.wisc.edu/forage/h-m-r/ for the most recent Weekly Hay Market Demand Reports

Best to Categorize in the Following

Establishment Goals


In-Season Production and Management Goals

Harvest Management Goals

Winter Checklist and Evaluation

Some Farmers Would Prefer this Activity to Crop Enterprise Budgets...

Establishment - Cost New Seeding Alfalfa in 2020/2021

Extension UNIVERSITY OF WIS	CONSIN-MADISON								
Direct Seeded Alf	falfa	Revised	April 8	, 2020					
Enter your numbers in blue	e cells								
Numbers in pink cells may									
	Unit	Quantity	Price	Amount					
Direct Production Input I	Expenses		(\$)	(\$/acre)					
Fertilizer									
Phosphorus (MAP)	lbs P ₂ O ₅	0	0.43	0.00	Phosphorous	MAP	DAP	TSP	
(DAP)	lbs P ₂ O ₅	50	0.44	22.17	Price/ton	450	408	800	
(TSP)	lbs P ₂ O ₅	0	0.87	0.00	% P ₂ O ₅	52	46	46	
					Cost / unit P₂O ₆	0.43	0.44	0.87	
Potassium	lbs K ₂ O	160	0.27	42.67					
					Potash				
Lime	Tons / acre	2.0	28	56.00	Price/ton	320			
					% K ₂ O	60			
Seed Plants					Cost / unit K ₂ O	0.27			
Alfalfa Seed	cost /lb.	8.00	cost/acre	30.00					
	lbs / acre	15			<u> </u>				
Grass or other seed	cost/lb								
	lbs/acre								

Tillage			Cost/acre	
Chop cornstalks	acre	0	13.00	0.00
Plow, moldboard	acre	0	21.00	0.00
Plow, chisel	acre	1	17.00	17.00
Disc	acre	1	14.00	14.00
Field cultivator	acre	1	14.00	14.00
Cultimulcher	acre	0	12.00	0.00
Till-all	acre	0	17.00	0.00
Planting regular	acre	1	17.00	17.00
Rotary hoe	acre	0	10.00	0.00
Total Tillage				62.00
Harvest				
Mower/conditioning	times per season	2	14.00	28.00
Raking	times per season	2	7.00	14.00
Windrow merging	times per season	1	7.50	7.50
Bale sm sq (40# bale)	% of annual harvest	0	0.65	0.00
Bale lg sq (600#+)	% of annual harvest	0.5	10.50	35.00
Bale Round (1000#)	% of annual harvest	0.5	11.00	22.00
Bale Wrapping	% of annual harvest	100%	4.50	24.00
Hauling	hours/acre/season	1	20.00	20.00
Total Harvest				150.50
Land Rent	acre	1	142.00	142.00
	1%/mth * (Direct inputs pl	us 20% of Till		15.74
_			_	
	Total	Operating	Expense	554.58
Crop Produced		Gross F	Returns	200.00
Alfalfa	ton/acre	2.0	150.00	300.00
		Net Retu	rn /Acre	-254.58

Establishment – Autotoxicity Risk Assessment and Herbicide Carryover Potential Considerations

Table 1. Alfalfa autotoxicity reseeding risk assessment.

		points	score
1.	Amount of previous alfalfa topgrowth incor- porated or left on soil surface		
	Fall cut or grazed	1	
	0 to 1 ton topgrowth	3	
	More than 1 ton topgrowth	5	
2.	Disease resistance of the variety to be seeded		
	High disease resistance	1	
	Moderate disease resistance	2	
	Low disease resistance	3	
3.	Irrigation or rainfall potential prior to reseeding		
	High (greater than 2 inches)	1	
	Medium (1 to 2 inches)	2	
	Low (less than 1 inch)	3	
4.	Soil type		
	Sandy	1	
	Loamy	2	
	Clayey	3	
5.	Tillage prior to reseeding		
	Moldboard plow	1	
	Chisel plow	2	
	No-till No-till	3	
6.	Sum of points from Questions 1-5		
7.	Age of previous alfalfa stand		
	Less than 1 year	0	
	1 to 2 years	0.5	
	More than 2 years	1	
8.	Reseeding delay after alfalfa kill/plowdown		
	12 months or more	0	
	6 months	1	
	2 to 4 weeks	2	

Alfalfa reseeding risk

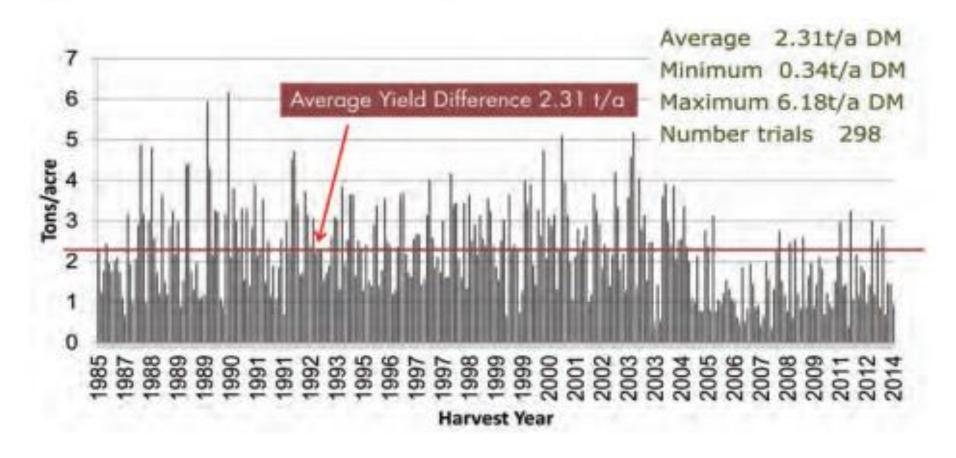
If you score:	The autotoxity risk is:	Recommendation
0	low	Seed
4–8	moderate	Caution-potential yield loss
9–12	high	Warning—yield loss likely
>13	very high	Avoid reseeding—likely stand and yield loss

Source: Craig Sheaffer, Dan Undersander, and Paul Peterson, Universities of Minnesota and Wisconsin, 2004.

Source: Alfalfa Management Guide – Dan Undersander

Establishment – Seed Bed Preparation

Establishment - One Way to Deal with Alfalfa Autotoxicity


The Traits that Affect Profitability the Most...

- Yield Potential
- Persistence
- Winterhardiness/Winter Survival
- Disease Resistance
- Forage Quality

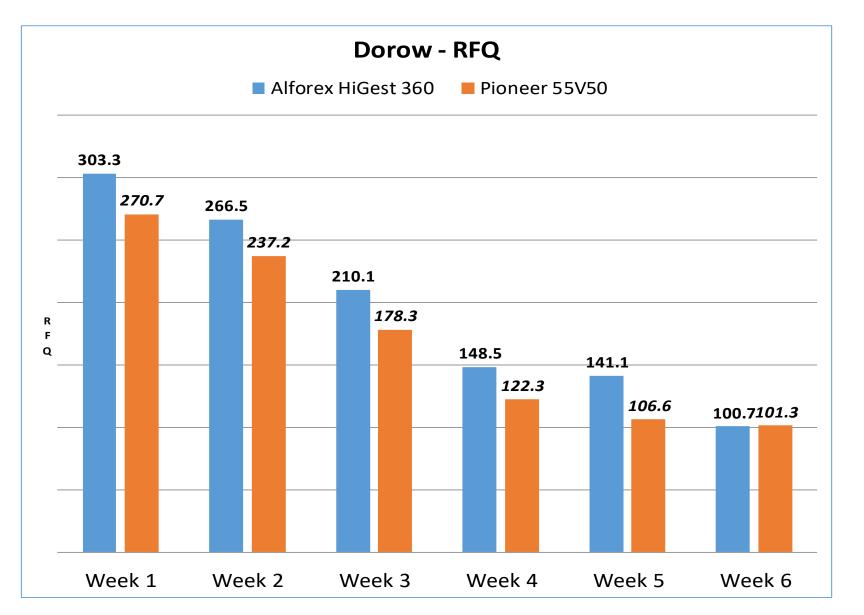
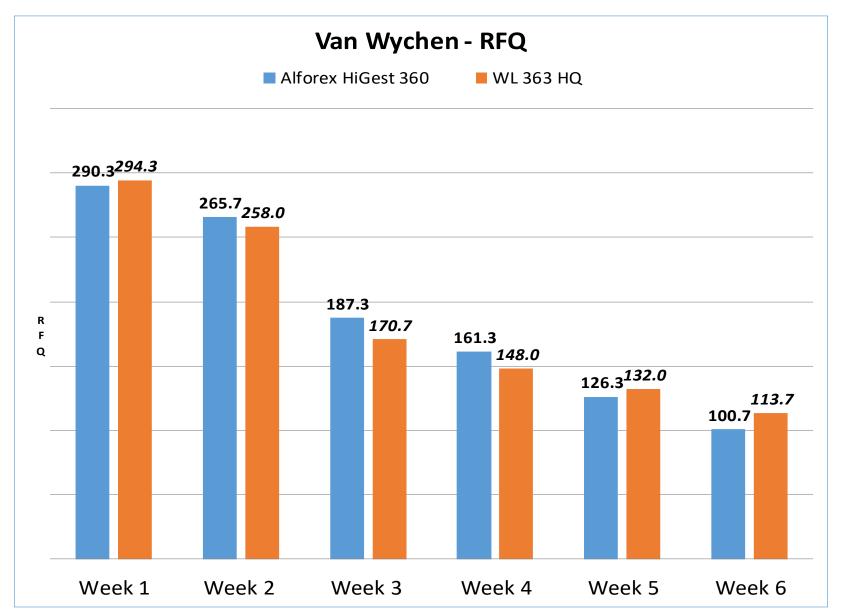

Establishment - Seed Selection Matters

Figure 6. Yield difference between top and bottom alfalfa entries in Wisconsin Alfalfa Trials, 1985 to 2014.



Outagamie Forage Council Alfalfa Plots

Outagamie Forage Council Alfalfa Plots

Establishment - Address pH Problems Before They Manifest Themselves in Alfalfa Fields...

Significant Yield Losses Can Occur if pH Issues are Not Resolved Early in the Stands Existence...

Fall Dormancy and Winter Survival Ratings Have Been Put to the Test Recently - January 2020

Establishment - Fall Dormancy Ratings and Winter Survival Ratings in Alfalfa

TABLE 1	Fall dormancy (FD) ratings
FD rating	Description
1, 2	Very dormant
3, 4	Dormant
5	Moderately dormant
6, 7	Semi-dormant
8, 9	Non-dormant
10, 11	Very non-dormant

TABLE 2	Winter survival ratings		
Score	Category		
1	Extremely winter-hardy		
2	Very winter-hardy		
3	Winter-hardy		
4	Moderately winter-hardy		
5	Slightly winter-hardy		
6	Non winter-hardy		

What Happens When Fall Formed Buds (2018) are Damaged/Killed the Following Spring (2019)

Establishment - Calibration of Seeding Equipment

Seeder Calibration

Different lots of seed flow at different rates as shown in this table where seeding rates
 of two different seeders were measured for different seed lots with no change in drill settings.

Variety/ Seed Lot	Brillon Seeder	John Deere Drill		
	lbs seed/ acre	lbs seed/ acre		
1	18.3	21.4		
2	17.0	20.3		
3	15.0	16.3		
4	13.8	16.3		
5	20.8	16.5		
6	20.3	16.8		

Ever run out of seed? This could be why.

Calibrate seeder by monitoring acres seeded from first half of bag.

Establishment - Calibration of Seeding Equipment

2. Worn seed metering devices may have different seeding rates for different rows. Box on right is seeding at twice the rate on the left.

Establishment - Calibration of Seeding Equipment

- Seeding depth seeds must be placed at ¼
 to ½ inch deep. If deeper the seed may not be able to push the growing plant to the soil surface, if too shallow, soil moisture may not be adequate for germination
- a. Brillion seeders will naturally place seed at the correct depth unless soil is crusted or too soft.
- b. Drills with depth bands are best for keeping seed placement at consistent depth.

c. Press wheels close to disc opener are second best they reduce the disc crossing a furrow or ridge separately from the press wheel.

Source: How to Get a Good Stand of Alfalfa or Grass – Dan Undersander, Forage Agronomist, UW-Madison

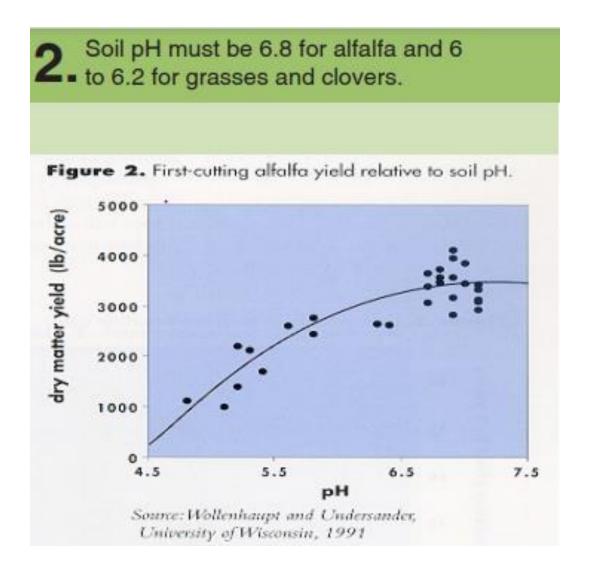
Depth of Planting Considerations...

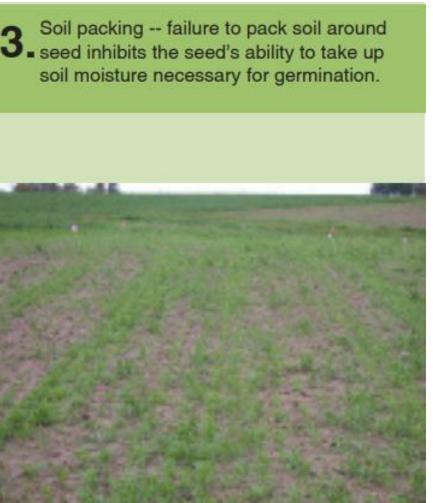
Soil should be firm enough at planting for a footprint to sink no deeper than 3/8 inch.

Percent seedling emergence at5 seeding depths.							
	:	Seeding depth (inches)					
Crop	0.25	0.5	1.0	1.5	2.0		
Alfalfa	78	64	53	45	19		
Birdsfoot trefoil	74	62	36	17	0		
Kentucky bluegrass	70	43	27	4	0		
Orchardgrass	93	79	52	41	12		
Red clover	89	62	56	22	14		
Smooth bromegrass	94	78	69	51	24		
Timothy	98	89	81	39	12		
White clover	91	47	28	2	0		

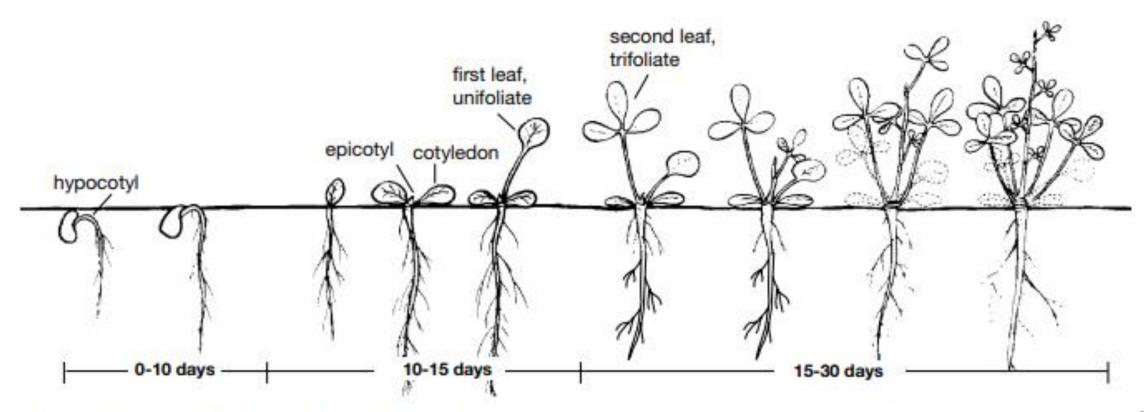
Rules of Thumb:

Heal of shoe shouldn't sink in more than ½ inch.


About 10% of seeds should be on soil surface after planting!


Source: Alfalfa Management Guide – Dan Undersander

Source: Ernest Weaver, Byron Seeds


Establishment - Soil pH and Importance of Seed to Soil Contact

Establishment - Alfalfa Seedling Development

Source: Dodds and Meyer, North Dakota State University, 1984.

Source: Alfalfa Management Guide – Dan Undersander

Establishment – Selecting Varieties for Your Soil Types and Conditions


Alfalfa Seed Coatings – Rhizobium Bacteria, Fungicide, Colorant, and Polymers (Limestone, Gypsum, and Mica)

Heavy Coated Seed – Pure Live Seed (PLS) Calculations

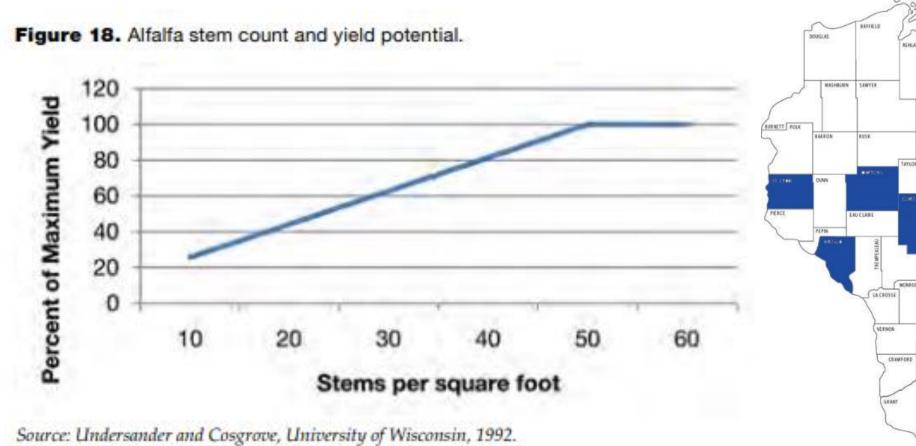
Alforex Hi-Gest 360 Pure Live Seed (PLS)

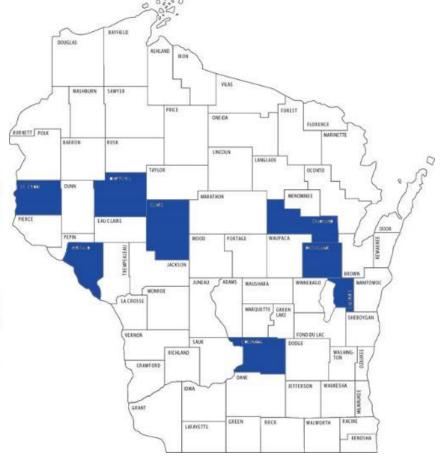
- Germination and Hard Seed = 93%
- Pure Seed = **65.98**%
- Germination and Hard Seed (93%) X Pure Seed (65.98%) = 63.16% PLS
- A 50 lb. Bag of Alforex Hi-Gest 360 would contain how many lbs. PLS?
- 50 lbs. X 63.16% PLS = 31.58 lbs. of PLS
- Planting 16 lbs. of seed out of the bag X 63.16% PLS = 10.1056 lbs. PLS/Acre

Establishment - Light Coating — PLS Calculations

Establishment - No Coating – PLS Calculations

Not Everyone is Utilizing the Latest Technology...

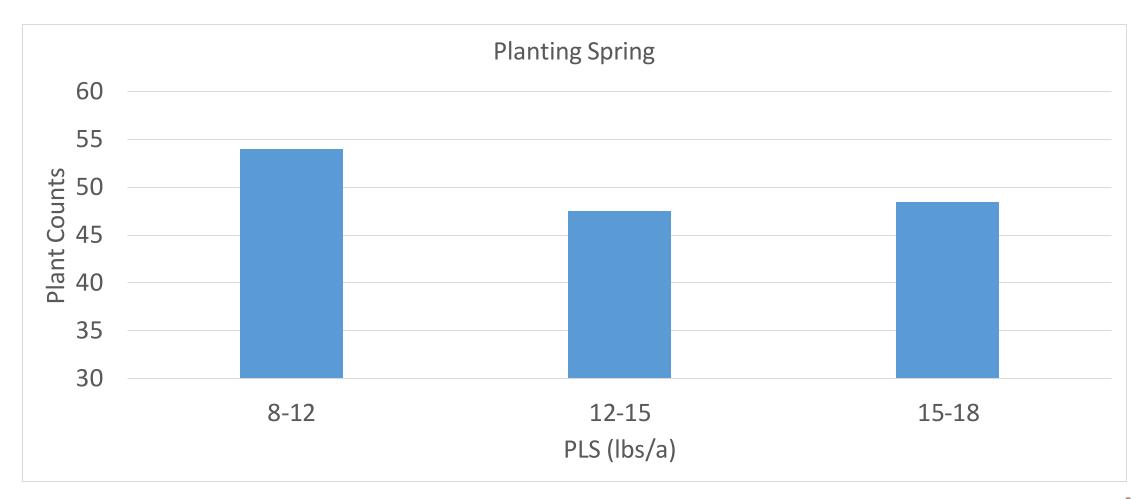

So, What is the Range in Alfalfa Planting Rates Across the State of Wisconsin?

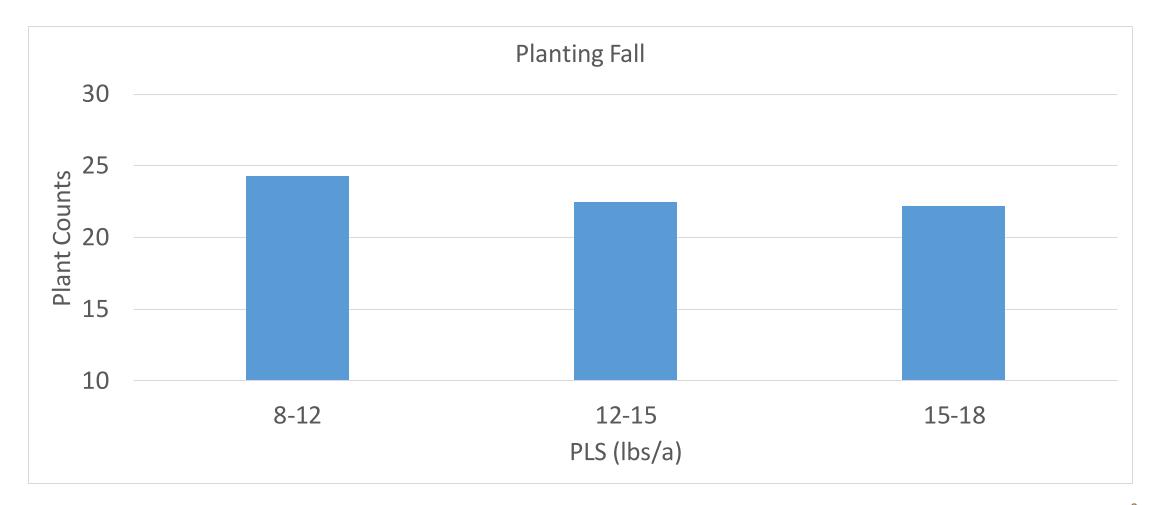


Evaluating Impact on Alfalfa Seeding Rates Statewide

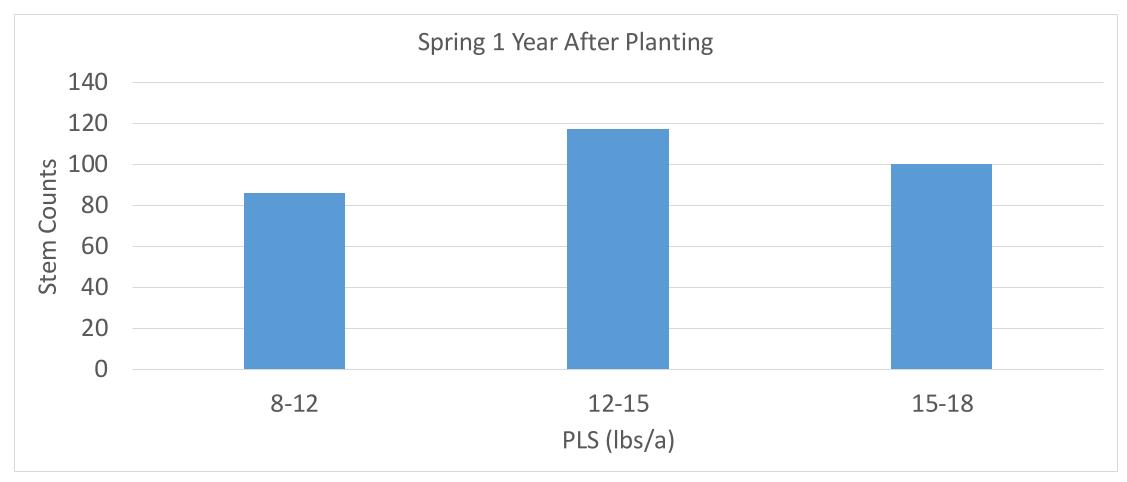
Source: Alfalfa Management Guide – Dan Undersander

Stem Counts, Not Plant Counts are the Determining Factor for Yield Potential...

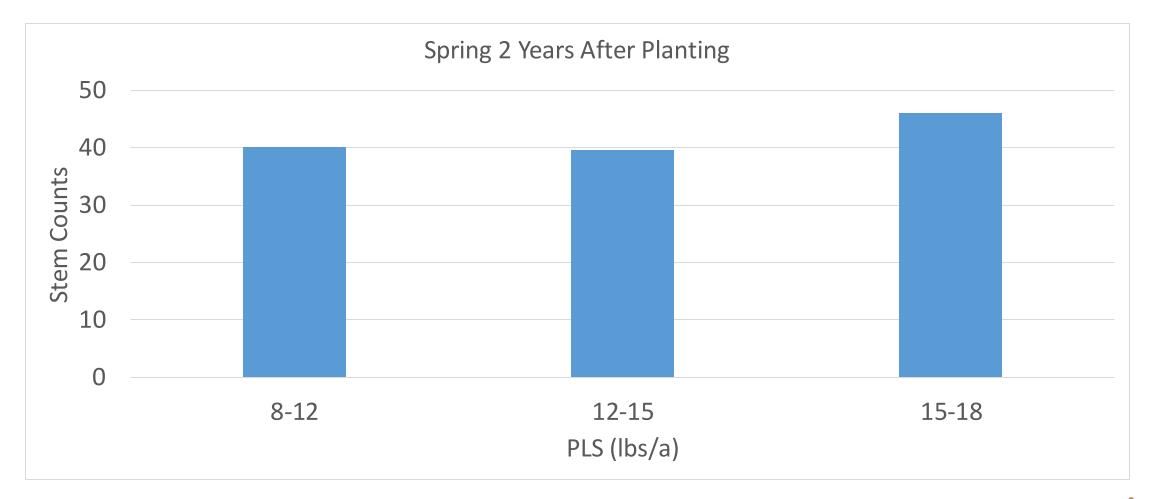




New Seeding in Spring, 30 Days after Planting - P=0.84



New Seeding in Fall, 5 Months After Planting - P=0.19



First Full Year of Production, Spring - P=0.50

Second Full Year of Production, Spring - P=0.69

Conclusions from the Statewide Alfalfa Seeding Rate Survey...

- We did not see a statistically significant difference in plant counts across the different seeding rates (12.5 lbs. to 22.5 lbs./8.8 lbs. PLS to 17.8 lbs. PLS) from the data collected across the state of Wisconsin.
- In addition, there was no observed statistically significant difference in stem counts from data collected across the state.
- The Upper Midwest Recommendation for PLS is not less than 10 lbs.
 per acre when establishing a new stand.
- Wisconsin recommendation is 10 12 lbs. PLS.
- Industry recommendations may be higher than Upper Midwest and Wisconsin recommendation.

In-Season Assessments – The Only Way to Get an Accurate Plant Count is to Dig the Plants up...

Some of the Impediments to a Productive Alfalfa Stand...

Residue from Previous Year(s), Cover Crops that Tiller, and Everyone's Favorite... Stones

Oh, Did I Mention the Equipment Operators...

In-Season Management and Production Goals - Scout for Deficiency Symptoms

Potassium deficiency

Leaves of severely deficient plants turn completely yellow.

Lower leaves of deficient plants are edged with white spots (left).

Sulfur deficiency

Stems are spindly with weak growth.

Leaves turn light green (left). Symptoms are similar to nitrogen deficiency.

Sometimes We Have Blind Spots Where We Don't See the Whole Picture

In-Season Production and Management - Another Consideration with Fall Dormancy

TABLE 3	Fall dormancy and speed of harvest
Fall dormancy	Days to remove forage from field
4.5+	1 to 2
3.5 to 4.5	3 to 4
<3.5	5 or greater

In-Season Management and Production Goals - Need to Pay Attention to Nutrient Removal

In-Season Management - Pay Attention to Removal Rates

Table 4. Pounds of nutrient removed per ton of alfalfa produced, dry matter basis.

nutrient	dry matter removed (lb/ton)
phosphorus (P)	6
phosphate (P ₂ O	₅) 14
potassium (K)	48
potash (K ₂ O)	58
calcium (Ca)	30
magnesium (Mg)	6
sulfur (S)	6
boron (B)	0.08
manganese (Mn)	0.12
iron (Fe)	0.33
zinc (Zn)	0.05
copper (Cu)	0.01
molybdenum (Mo)	0.002

Table 5. Sufficiency levels of nutrients, top 6 inches of alfalfa at first flower.

nutrient	low	sufficient	high
		%	
nitrogen	<2.50	2.50-4.00	>4.00
phosphorus	< 0.25	0.25-0.45	>0.45
potassium	<2.25	2.25-3.40	>3.40
calcium	< 0.70	0.70-2.50	>2.50
magnesium	<0.25	0.25-0.70	>0.70
sulfur	<0.25	0.25-0.50	>0.50
		ppm	
boron	<25	25-60	>60
manganese	<20	20-100	>100
iron	<30	30-250	>250
zinc	<20	20-60	>60
copper	<3	3-30	>30
molybdenum	<1	1–5	>5

Source: Alfalfa Management Guide – Dan Undersander

Harvest Management - Suggestions for Dry Hay

Table 13. Summary of good hay-making practices.

practice	reason	benefit
mow forage early in day	allow full day's drying	faster drop in moisture less respiration loss less likelihood of rain damage
form into wide swath	increase drying rate	faster drop in moisture less respiration loss less likelihood of rain damage higher quantity and quality
rake at 40–50% moisture content	increase drying rate	faster drop in moisture less respiration loss less likelihood of rain damage less leaf shatter higher quantity and quality
bale hay at 18–20% moisture content	optimize preservation	less leaf shatter inhibits molds and browning low chance of fire higher quantity and quality
store hay under cover	protect from rain, sun	inhibits molds and browning less loss from rain damage higher quantity and quality

Source: Pitt, Cornell University, 1991.

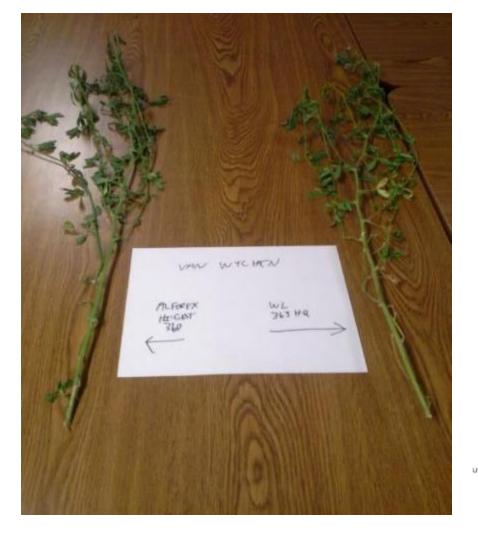
Harvest Management - Criteria for Judging Alfalfa Dry Hay Samples for the World's Forage Analysis Superbowl

Sample Number _____

A. Maturity

vegetative to early bud	15-35
mid bud	40
late bud	38
1/4 bloom	33
½ bloom	30
full bloom	15-22
Score	(max 40 pts)

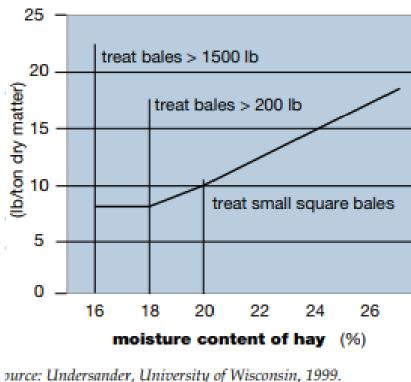
Harvest Management - Criteria for Judging Alfalfa Dry Hay Samples for the World's Forage Analysis Superbowl


B.	Leafiness	
*	50% or more	15
	45 - 49%	14
	40 - 44%	12
	35 - 39%	10
	30 - 34%	7
	below 25%	0-5
	Score	(max 15 pts

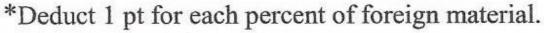
In-Season Management - Visual Observations Made by the Host Farmers Helping Collect Data

Harvest Management - Criteria for Judging Alfalfa Dry Hay Samples for the World's Forage Analysis Superbowl

C. Color dark green 15 medium green 14 grey green 11 yellowish green 8-10 bleached <7 Score _____ (max 15 pts)


The Goal is to get the Alfalfa Down to 60% Moisture as Soon a Possible Due to Respiration Losses

igure 27. Propionic acid needed to preserve hay.



Harvest at Appropriate Dry Matter (DM)

Harvest Management - Criteria for Judging Alfalfa Dry Hay Samples for the World's Forage Analysis Superbowl

E.	Texture small, pliable stems	8-10
	large, pliable stems	6-7
	brittle stems	0-5
	Score	_ (max 10 pts)
	Total points _	
	Foreign material*	
	Final Score	

In-Season Management – Weeds Impact on Quality

Table 8. Impact of common weeds on forage quality.

		Relative seriousness	
	Serious	Moderate	Slight
annual weeds	cocklebur Eastern black nightshade	green foxtail pennycress	lambsquarters pigweeds
	giant foxtail	shepherd's purse	ragweed, common
	giant ragweed smartweeds yellow foxtail	velvetleaf	
perennial weeds	curly dock	Canada thistle	dandelion
	hoary alyssum yellow rocket	quackgrass and other grasses	white cockle

Source: Doll, University of Wisconsin, 1998.

Harvest Management - Summary of Haylage Harvesting & Feeding Practices

practice	reason	benefit
minimize drying time	reduce respiration	reduced nutrient and energy losses more sugar for fermentation lower silage pH
chop at correct TLC ^a fill silo quickly enhance compaction seal silo carefully	minimize exposure to oxygen	reduced nutrient and energy losses more sugar for fermentation reduced silo temperatures less heat damage (browning) faster pH decline better aerobic stability less chance of listeria less protein solubilization
ensile at 30–50% dry matter content	optimize fermentation	reduced nutrient and energy losses proper silo temperatures less heat damage (browning) control clostridia prevent effluent flow
leave silo sealed for at least 14 days	allow complete fermentation	lower silage pH more fermentation acids better aerobic stability less chance of listeria
unload 2–6 inches/day keep surface smooth	stay ahead of spoilage	limit aerobic deterioration
discard deteriorated silage	avoid animal health problems	prevent toxic poisoning, mycotic infections prevent listeriosis, clostridial toxins

^a TLC = theoretical length of cut. Chop alfalfa silage at 3/8-inch TLC.

Source: Pitt, R.E., Cornell University, 1990.

Harvesting Goals – Wide Swath Haylage

Criteria Used to Judge Haylage Samples

Sample Number _____

A. Maturity

vegetative to early bud	5-10
bud	15
1/10 bloom	13
½ bloom	10
full bloom	5

Score (max 15 pts)

Harvest at Correct Fiber Length

Color of the Haylage Samples is Evaluated

C. Color 26-30 Desirable -Natural dark green Red clover may be darker Acceptable -16-25 Deep dark green or very yellowish-green or slight brownish-green Undesirable -0 - 15brown or black (excessive heating) significant white or gray mold slimy (max 30 pts) Score

Fermentation Characteristics

D. Odor

Desirable - 26-30 pleasant, no putrification

Acceptable - 16-25 Somewhat strong, yeasty, musty or slight burnt odor

Undesirable - 0-15

Score _____ (max 30 pts)

Final Score

Waste Not, Want Not...

Waste Not, Want Not

Harvest Management – Protect and Preserve What You Have Grown and Harvested

Storage Methods Only Have Limited Potential to Preserve Forage Quality...

2ND

3RD

3RD

3RD

4TH

4TH

4TH

1ST

1ST

1ST

2ND

2ND

The Four Things Many **Nutritionist** Look at to Make a Quick Judgement about Forage Quality...

- 1) Dry Matter (DM)
- 2) Crude Protein (CP)

 3) Neutral Detergent Fiber Digestibility (NDFD) 30-hour, 120-hour, 240-hour or TTNDFD

 4) Relative Feed Value (RFV), Relative Forage Quality (RFQ), or Milk Per Ton (MPT)

Haylage Report for Wisconsin Alfalfa Yield and Persistence (WAYP) Field in Outagamie County 2018 and 2019

	2018 1ST	2019 1ST	2018 2ND	2019 2ND	2018 3RD	2019 3RD	2018 4TH	2019 4TH	Changes from 2018 to 2019 (-Red)
HARVEST DATE:	6/4/2018	6/4/2019	7/2/2018	7/10/2019	8/1/2018	8/2/2019	9/7/2018	9/10/2019	(+ Black)
Cutting	1st	1st	2nd	2nd	3rd	3rd	4th	4th	
Dry Matter (DM) %	37.97	46.33	31.49	35.99	46.32	47.59	43.81	42.67	3.25
Moisture %	62.03	53.67	68.51	64.01	53.68	52.41	56.19	57.33	(3.25)
Crude Protein %	20.30	15.96	24.10	21.20	25.50	22.99	22.50	24.45	(1.95)
Acid Detergent Fiber	36.30	32.60	31.60	32.01	26.70	29.36	37.20	30.35	(1.87)
Neutral Detergent Fiber	42.30	37.35	37.80	38.45	33.70	36.30	43.30	35.24	(2.44)
Neutral Detergent Fiber Digestibiltiy	49.10	51.40	51.50	53.46	48.90	51.71	41.50	50.78	4.09
Relative Forage Quality-RFQ	148.00	184.98	179.00	182.23	193.00	192.45	117.00	194.26	29.23
Milk Per Ton (MPT) Lbs.	2,771.00	3,166.50	3,056.00	3,165.50	2,967.00	3,220.00	2,078.00	3,146.50	456.63
Wet Tons @ 55% Moisture	3.49	2.53	2.38	2.58	1.82	1.18	1.38	1.62	(1.16)
Dry Matter (DM) Tons	1.57	1.14	1.07	1.16	0.82	0.53	0.62	0.73	(0.52)
Milk Per Acre (MPA) Lbs.	4,350.47	3,609.81	3,269.92	3,671.98	2,432.94	1,706.60	1,288.36	2,296.95	(56.35)

2ND

3RD

3RD

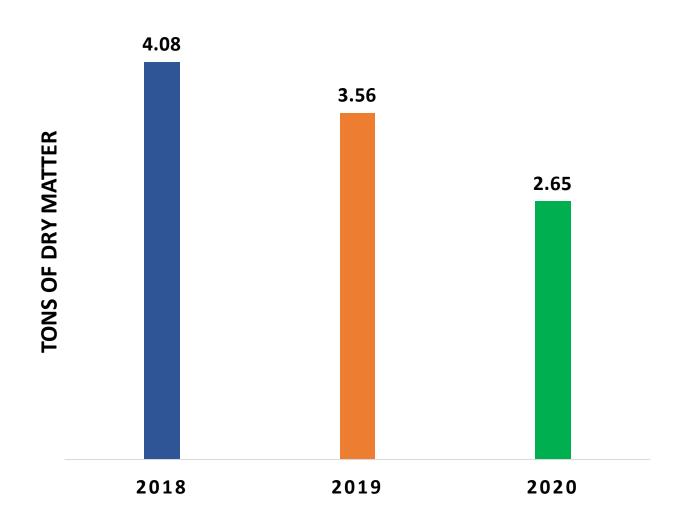
3RD

4TH

4TH

4TH

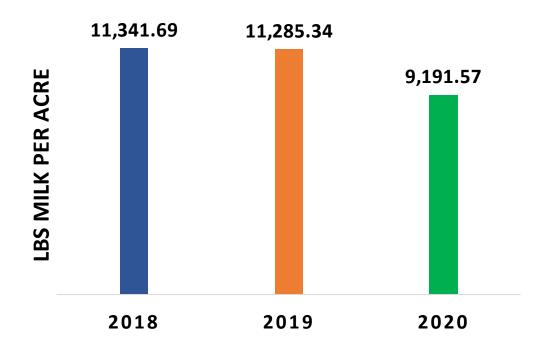
1ST


1ST

1ST

2ND

2ND



Haylage Report for Wisconsin Alfalfa Yield and Persistence (WAYP) Field in Outagamie County 2019 and 2020

	2019 1ST	2020 1ST	2019 2ND	2020 2ND	2019 3RD	2020 3RD	2019 4TH	2020 4TH	Changes from 2019 to 2020 (-Red) (+ Black)
HARVEST DATE:	6/4/2019	6/6/2020	7/10/2019	7/7/2020	8/2/2019	8/7/2020	9/10/2019	9/6/2020	
Cutting	1st	1st	2nd	2nd	3rd	3rd	4th	4th	
Dry Matter (DM) %	46.33	36.35	35.99	41.89	47.59	39.72	42.67	48.20	(1.53)
Moisture %	53.67	63.38	64.01	58.11	52.41	62.08	57.33	51.80	1.53
Crude Protein	15.96	23.12	21.20	27.49	22.99	20.54	24.45	20.65	1.79
Acid Detergent Fiber	32.60	31.52	32.01	29.99	29.36	29.47	30.35	30.36	(0.75)
Neutral Detergent Fiber	37.35	34.06	38.45	35.26	36.30	41.42	35.24	40.68	0.99
Neutral Detergent Fiber Digestibiltiy	51.40	54.99	53.46	56.65	51.71	71.77	50.78	73.61	12.42
Relative Forage Quality-RFQ	184.98	216.08	182.23	208.03	192.45	212.30	194.26	213.59	24.02
Milk Per Ton (MPT) Lbs.	3,166.50	3,402.00	3,165.50	3,313.00	3,220.00	3,665.50	3,146.50	3576.50	314.62
Wet Tons @ 55% Moisture	2.53	1.18	2.58	1.91	1.18	0.82	1.62	1.98	(2.02)
Dry Matter (DM) Tons	1.14	0.53	1.16	0.86	0.53	0.37	0.73	0.89	(0.91)
Milk Per Acre (MPA) Lbs.	3,609.81	1,803.06	3,671.98	2,849.18	1,706.60	1,356.24	2,296.95	3,183.09	(2,093.77)

MILK PER ACRE

Evaluating Your Winter Survival Risk Factors

Table 12. Calculate your risk of alfalfa winter injury. Enter the score for answers that describe your situation.

points

SCAPA

	point	IS	score
1. What is your stand age?			
> 3 years	4		
2-3 years	2		
≤ 1 year	1		
2. Describe your alfalfa variety:			
a. What is the winterhardiness?			
Higher than recommended for region	3		
Recommended for region	2		
Lower than recommended for region	1		
	a. total		
b. What is the resistance to important diseases in			
your region?			
No resistance	4		
Moderate or low resistance	3		
High level of resistance	1		
	b. total		
Alfalfa variety total score (m	ultiply a and b)		
3. What is your soil pH?			
≤ 6.0	4		
6.1-6.5	2		
≥ 6.6	0		
4. What is your soil exchangeable K level?			
Low (≤ 80 ppm)	4		
Medium (81-120 ppm)	3		
Optimum (121–160 ppm)	1		
High (≥ 161 ppm)	0		

What is your soil drain Poor (somewhat poorly	_	3	
Medium (well to modera	2		
Excellent (sandy soils)	1		
6. What is your soil moi	sture during fall/winter	?	
Medium to dry	0		
Wet		5	
7. Describe your harves	t frequency:		
Cut interval	Last cutting ^a		
< 30 days	Sept. 1-Oct. 15	5	
	After Oct. 15	4	
	Before Sept. 1	3	
30-35 days	Sept. 1-Oct. 15	4	
•	After Oct. 15	2	
	Before Sept. 1	0	
> 35 days	Sept. 1-Oct. 15	2	
,	After Oct. 15	0	
	Before Sept. 1	0	
8. For a mid-September do you leave more th	or late October cut, an 6 inches of stubble?		
No		1	
Yes		0	
Determine your total so			
(sum of points from question	ns 1–8)	total	

^a Dates listed are for northernmost states; states south of that area should use later dates. Source: Adapted from C.C. Sheaffer, University of Minnesota, 1990.

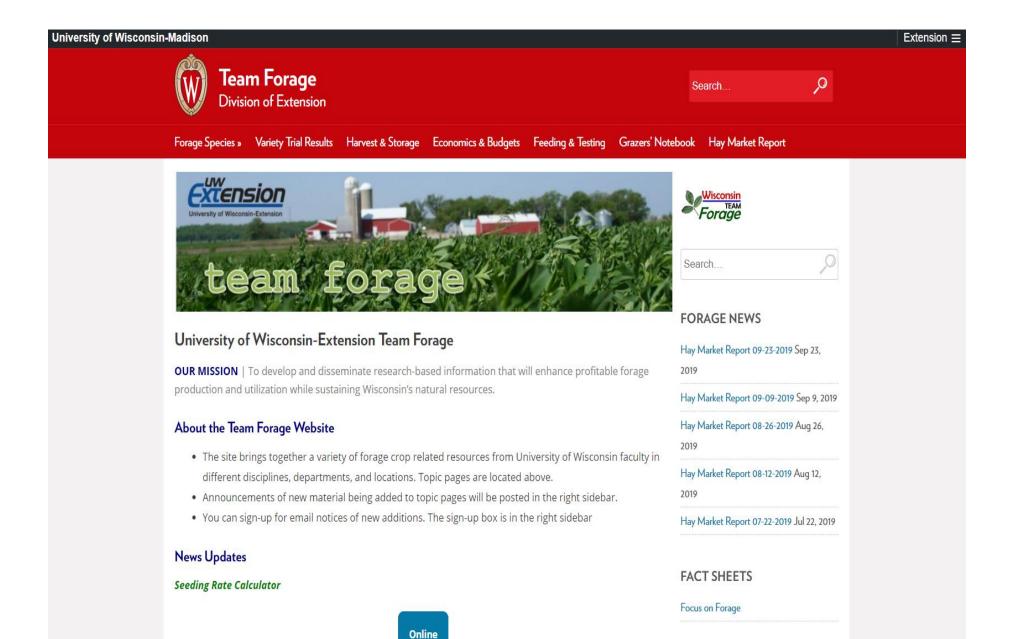
Source: Alfalfa Management Guide – Dan Undersander

Strategies to Extend the Life of Your Alfalfa Stand

Winter injury risk

If you score:	Your risk is:
3–7	low/below average
8-12	moderate/average
13-17	high/above average
>17	very high/dangerous

- Get Crop Out of the Field within 48 Hours – Wheel Traffic on Regrowth
- Maintain Soil Test Potassium (K)
- Let One Cutting go to Bloom During the Growing Season
- Final Cut Should Occur
 When Less than 200
 Growing Degree Days
 (GDD) or More than 500
 GDD are Expected


Source: Alfalfa Management Guide – Dan Undersander

Winter Survival Management – Letting One Cutting Go to Bloom to Rest and Restore Carbohydrates

https://fyi.extension.wisc.edu/forage/

Discussion with Aaron Barclay on Winning the 2019 Alfalfa Haylage Category – World's Forage Analysis Superbowl

NM SW PM CM PD 0.0 0.0 0.0 1.0 0.0

CEU Tracking Number: WI 56549 Approved CEUs:

Meeting Title: Focus on Forage Webinar

Location: Online, WI

Meeting Date: 01/20/2021, 01:00 PM to 01:30 PM

SIGN-IN SHEET FOR CCA, CPAg, CPSS and CPSC ONLY

Please scan code with your mobile device to receive CEUs immediately.

Once scanned, the app will automatically sign you in.

If you are unable to scan the QR code, please enter your
First and Last Name and CCA/CPAg/CPSS/CPSC number in the Chat.

Focus on Forage

Optimizing forage production in Wisconsin

Wednesdays – January 13 through March 3 – 12:30 to 1:30 pm Register at https://go.wisc.edu/334pqz

January 20 Strategies for Achieving Alfalfa Production Goals

January 27 Optimizing Production of Grass & Mixed Grass Forages

February 3 Using Small Grains to Fill a Forge Niche

February 10 Alternative Forage Strategies When Alfalfa Fails

(Tom Kilcer, Advanced Ag Systems)

February 17 No webinar

February 24 To be determined

March 3 To be determined

Questions?
Email Ashley Blackburn aablackburn@wisc.edu