CBD Hemp Production

Shelby Ellison, PhD & Leah Sandler, PhD
Outline

• Introduction to CBD
• Planting material
• Planting considerations
• Mid-season considerations
• Flowering
Cannabis sativa L.

- Annual
- Dioecious
 - Males and female flowers are typically on separate plants
- Wind pollinated
- Cannabis > 0.3% THC
 - Medicinal or recreational use
- Cannabis <0.3% THC
 - Industrial Hemp
 - Seed
 - Fiber
 - CBD
What is CBD?

- 8 Major Cannabinoid Acids Naturally Produced by Cannabis

CBGA (Cannabigerolic acid)
THCA (Δ^9-tetrahydrocannabinolic acid)
CBDCA (Cannabidiolic acid)
CBCA (Cannabichromene acid)
CBGVA (Cannabigerоваринic acid)
THCVA (Tetrahydrocanabivarvinic acid)
CBDVA (Cannabidivarvinic acid)
CBCVA (Cannabichromevarin acid)

CBG (Cannabigerol)
THC ($\Delta9$-tetrahydrocannabinol)
CBD (Cannabidiol)
CBC (Cannabichromene)
CBGV (Cannabigerivarin)
THCV (Tetrahydrocanabivarvin)
CBDV (Cannabidivarvin)
CBCV (Cannabichromevarin)

Heat

THCA and **CBDCA** are usually the most abundant cannabinoids in Cannabis varieties.
How does CBD work?

• CBD interacts with the body’s endocannabinoid system

• Almost every organ of your body contains cannabinoid receptors
 – Particularly in brain and central nervous system.

• The endocannabinoid system has four primary purposes
 – neuroprotection, stress relief, immune response, and regulating the body’s general state of balance.
How does CBD work?

• The human body has two primary cannabinoid receptors (CB1 and CB2).

• Unlike THC, CBD does not interact with these receptors.
 – This is why CBD does not cause any psychoactive effect.

• CBD inhibits the break down of endocannabinoids, leading to an increase in your body’s naturally-produced cannabinoids. *Leafly
Medicinal uses of CBD

• Anti-seizure
• Anti-inflammatory
• Analgesic
• Anti-tumor effects
• Anti-psychotic
• Inflammatory bowel disease
• Depression
Where does CBD come from?

- The highest concentrations of CBDA are found on trichomes of an unpollinated female flower
- Trichomes are glandular hairs found on the surface of plants
- Trichomes also produce terpenes and flavonoids which contribute to a plant’s aroma and flavor profile
Determining sex

- Cannabis plants have pre-flowers at their nodes (where leaves and branches extend from the stalk).
- By the sixth week, you should be able to find the pre-flowers and confidently determine the sex of your plant.
- Remove male plants as well as hermaphroditic plants that show both sex types.
Female and male pre-flowers

Female pre-flower
Male pre-flower
Mature female and male flowers

Female flower

Male flower
Planting materials

- What will do well in Wisconsin?
- CO, OR, CA cultivars – different climates (drier)
- Ditchweed left over from 40s and 50s
Planting materials

- **Seed**
 - Typically more hearty than clones
 - Non-feminized means will have both males and females, in which case you’ll need to get rid of the males
 - A lot of beginning growers start with feminized seeds
 - Start in greenhouse and transplant (hardened off)
Planting materials

• Clones
 – Directly cut from a female mother plant
 – Guaranteed females (hopefully)
 – Need to be hardened off

• DATCP website currently has a list of approved varieties - https://datcp.wi.gov/Documents/IHApprovedCBDVarieties.pdf

PC: Forrest Woolery
Starting seeds

• Cells – 144’s, deep cell
• Conscious of tap root and transplant shock
• Potting mix
• Adequate water – careful to avoid overwater
 – Flood tables
• 0.5” depth
Greenhouse protocol

• No longer than 4 weeks in greenhouse
• Cuttings take approx. 10 days to start rooting
• Harden off before transplant – shade cloth
 – Particularly if using lights – UV rays
CBD agronomic disclaimer

- Optimum agronomic protocols for CBD production in field-scale systems has not been defined by replicated research methods.
- Much of what is practiced today is extrapolated from *Cannabis* production systems in U.S. states where it is legal and/or from other countries.

(Williams & Mundell, 2015)
Planting: Time of year

• Transplants – clones or seedlings
 – No longer than 4 weeks in greenhouse
• VT started 14th May, transplanted 6th July
 – Or throughout month of June
• NY July 6 and 9
• Can start in late May- through mid June
• Day length sensitivity; will start to flower want good vegetative growth to support flowering
• Direct seed - mid May to early June
<table>
<thead>
<tr>
<th>Planting date</th>
<th>Plant weight</th>
<th>Plant height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs plant(^{-1})</td>
<td>Cm</td>
</tr>
<tr>
<td>14-Jun</td>
<td>5.38a(\d)</td>
<td>82.1</td>
</tr>
<tr>
<td>21-Jun</td>
<td>4.83ab</td>
<td>80.5</td>
</tr>
<tr>
<td>27-Jun</td>
<td>4.20b</td>
<td>73.8</td>
</tr>
<tr>
<td>LSD (0.10)</td>
<td>0.734</td>
<td>NS</td>
</tr>
<tr>
<td>Trial mean</td>
<td>78.8</td>
<td>4.80</td>
</tr>
</tbody>
</table>

(Darby et al., 2018)
<table>
<thead>
<tr>
<th>Planting date</th>
<th>Dry matter flower yield†</th>
<th>Unmarketable dry matter flower yield</th>
<th>Dry matter flower yield</th>
<th>Unmarketable dry matter flower yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs plant⁻¹</td>
<td>lbs plant⁻¹</td>
<td>lbs ac⁻¹</td>
<td>lbs ac⁻¹</td>
</tr>
<tr>
<td>14-Jun</td>
<td>0.740</td>
<td>0.0151</td>
<td>2920</td>
<td>38.9</td>
</tr>
<tr>
<td>21-Jun</td>
<td>0.672</td>
<td>0.0223</td>
<td>3243</td>
<td>39.4</td>
</tr>
<tr>
<td>27-Jun</td>
<td>0.621</td>
<td>0.0149</td>
<td>2755</td>
<td>27.9</td>
</tr>
<tr>
<td>LSD (0.10)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Trial mean</td>
<td>0.678</td>
<td>0.0174</td>
<td>2973</td>
<td>35.4</td>
</tr>
</tbody>
</table>

† Dry matter is at 0% moisture.

(Darby et al., 2018)
Planting: Types of soil

• Non-marginal land
• Well draining – does not like excessive moisture
• Loamy
 – Deep tap root will help stabilize, clay or compaction hard on roots
 – Nutrient heavy – soils that can hold nutrients but not bind them
• pH 5.9- 6.5 up to 7.5
Planting: Field Prep - tillage

• No till
 • Plant into strips of clover, rye, green mats

• Tilled soil with cover planted at same time
 – Hit twice – let weed flush come up and then hit it again right before transplant or seeding

• Black plastic

• Don’t recommend straw due to moisture and mold
Planting: Field Prep-Fertility

• High nutrient use crop
• 100-120 N lbs/acre at planting
 – NPK – 2:1:2 – K is important, but largely added N
• Additional N approx. month later, before flowering (50 lbs/acre)
• Clover additional N
• Think about spacing - fertilizing a lot of unused soil
 – Fertilize when laying plastic
 – Plant cover to hold nutrients
 – High grow facilities may use fertigation
Planting: Spacing

• Different recommendations
• Direct seeding – 30 in. centers, 12-16 in row
 – 24,000 seeds/lb, 1/2lb per acre at 50/50
• Pulling males may increase spacing can go closer if non feminized
• Transplants – 1x1ft all the way to 6x6ft
 – 1,500 to 4,000 plants an acre
• Again may be pulling males
<table>
<thead>
<tr>
<th>Plant spacing, ft x ft</th>
<th>Population* , plants ac⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1</td>
<td>43,560</td>
</tr>
<tr>
<td>3 x 3</td>
<td>4,840</td>
</tr>
<tr>
<td>5 x 5</td>
<td>1,742</td>
</tr>
</tbody>
</table>

*Population does not account for alleys or roads.

(Darby et al., 2018)
<table>
<thead>
<tr>
<th>Plant spacing</th>
<th>Dry matter flower yield†</th>
<th>Unmarketable dry matter flower yield†</th>
<th>Dry matter flower yield†</th>
<th>Unmarketable dry matter flower yield†</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft x ft</td>
<td>lbs plant⁻¹</td>
<td>lbs plant⁻¹</td>
<td>lbs ac⁻¹</td>
<td>lbs ac⁻¹</td>
</tr>
<tr>
<td>1 x 1</td>
<td>0.084ct</td>
<td>0.00a</td>
<td>3669a</td>
<td>7.16a</td>
</tr>
<tr>
<td>3 x 3</td>
<td>0.600b</td>
<td>0.003a</td>
<td>2894b</td>
<td>12.4a</td>
</tr>
<tr>
<td>5 x 5</td>
<td>1.35a</td>
<td>0.049b</td>
<td>2354c</td>
<td>86.6b</td>
</tr>
<tr>
<td>LSD (0.10)</td>
<td>0.093</td>
<td>0.019</td>
<td>411</td>
<td>35.9</td>
</tr>
<tr>
<td>Trial mean</td>
<td>0.678</td>
<td>0.017</td>
<td>2973</td>
<td>35.4</td>
</tr>
</tbody>
</table>

(Darby et al., 2018)
Planting: Equipment

• Direct seeding
 • Planter – sorghum plate

• Transplants

• Into prepped beds, plastic beds, no-till cover
 – Water wheel
 – Closing wheel transplanter
 – 4 wheel tobacco setter

• Avoid root binding and more than 4 wks to reduce transplant shock
Managing males

• Non-feminized Seed – 50/50
• Feminized – not always a guarantee
• Need to be on constant lookout for males
 – Your own plants
 – Nearby feral hemp (“ditch weed”)
 – Remove as soon as possible
• Pollen is incredibly prolific
 – Experts recommend 10 miles between CBD hemp and fiber/grain hemp
(Small & Antle, 2003)
Total CBD Concentrations as a Function of Pollination and Bud Location

(Williams, Chappell, Pauly)
Indoor production

• Trellis plants – netting, drop down
• Remove bottom branching for air flow (10”)
• Additional pruning can be done to provide greater airflow and potentially reduce fungal infections
 – promote more flowering branches and increase yields
Water management

• 12-15 in (hemp), 25-30 in (marijuana)—research from CSU

• Approx. 6 gallons per plant a week - CO

• Drip tape

• Linear or center pivot irrigation

• Traveling gun
Nutrient management - N

• Pre-plant applications
• In season N
 – Most nitrogen hungry at flowering
• 1,674 to 4,209 kg ha\(^{-1}\) from 0 - 200 kg N
• Grower in KT – 125-200 lb/acre N, pre plant and over top application in July
Nutrient management - K

- Keep potassium levels in medium to high range of > 250 ppm range
- K is mostly in stalk and vegetation – greatest uptake at the start of flowering
<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Total Plant (kg/ha)</th>
<th>Grain (kg/ha)</th>
<th>Uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hemp*</td>
<td>Canola**</td>
<td>Hemp*</td>
</tr>
<tr>
<td>N</td>
<td>200</td>
<td>120</td>
<td>40</td>
</tr>
<tr>
<td>P</td>
<td>47</td>
<td>50</td>
<td>19</td>
</tr>
<tr>
<td>K</td>
<td>211</td>
<td>75</td>
<td>10</td>
</tr>
<tr>
<td>S</td>
<td>14</td>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>

*Source Canola: Canadian Fertilizer Institute
Weed Management

• No labeled herbicides or pesticides
• Black plastic
• Cover – clover, rye
 – Large enough spacing to mow
• Row cultivation or hoes
Pest Management - insects

• Aphids (Cannabis aphid), mites, thrips
• Insects that chew leaves of the plant (defoliators) – caterpillars, beetles, grasshoppers
• Stalk borers- European corn borer, Eurasian corn borer in CO
• Corn earworm
Pest Management - insects

- https://hempinsects.agsci.colostate.edu
- JM Parkland
Pest Management - insects

- Biopesticides, soaps, and oils – state approved least-toxic pesticides
- Monitor visually and with sticky traps
- Infested plants pruned
- Caterpillars, etc. removed by hand picking
- Insectary plants grown around the perimeter can provide beneficial insects – green lacewings, syrphid flies, collops beetle, damsel bugs
Pest Management - disease

- More humid climate than west - will be a challenge
- Powdery mildew (*Podosphaera macularis*) and gray mold (*Botrytis cinerea*)
- Botryis – “bud rot”, inside flowers causing rot from inside out
- Powdery mildew - first appears white and powdery sports on leaf tops, will then spread
 – Downy mildew similar
Pest Management - disease

- May respond to oils, potassium bicarbonate, and induced systemic materials such as potassium phosphate
Pest Management - vertebrates

- Deer like to graze
- Fences and other barriers
- Traps for rabbits, mice, moles
Thank you!

Questions?

Shelby Ellison – slrepinski@wisc.edu
Leah Sandler – lsandler@michaelfields.org