Optimization and Depletion Potential

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science.

The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information

How do wells interact with streams?

Original System

science for a changing world

interception

science for a changing world

diversion

science for a changing world

induced infiltration

science for a changing world

interception diversion induced infiltration

*Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government

not imply endorsement by the U.S. Government

science for a changing world

*Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government

not imply endorsement by the U.S. Government

science for a changing world

*Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government

Calculating Depletion Potential

Depletion Potential

 $\frac{\Delta Qstream}{\Delta Qwell}$

$\frac{\Delta Qstream}{\Delta Qwell}$

The reduction in flow at a stream location due to new pumping

$\frac{\Delta Qstream}{\Delta Qwell}$

The reduction in flow at a stream location due to new pumping Evaluated by:

running the model without new pumping

running the model again with new pumping

calculating the difference in stream flow

$\frac{\Delta Qstream}{\Delta Qwell}$

The reduction in flow at a stream location due to new pumping Evaluated by:

running the model without new pumping

running the model again with new pumping

calculating the difference in stream flow

Since both have units of flow, express as a ratio

 $\frac{\Delta Qstream}{\Delta Qwell} \times Qwell = \text{predicted depletion}$

Preliminary Information-Subject to Revision. Not for Citation. Depletion Potential: Kennedy

Preliminary Information-Subject to Revision. Not for Citation. Depletion Potential: Eisenhower

Preliminary Information-Subject to Revision. Not for Citation. Depletion Potential: Interstate 39

Using Depletion Potential to Evaluate Streamflow and Pumping Changes

Preliminary Information-Subject to Revision. Not for Citation. Steady State: Remove wells and recover streamflow

Preliminary Information-Subject to Revision. Not for Citation. Transient: Remove wells and recover streamflow

Constrained Optimization

Can we *minimize* reduction in pumping meeting the *constraint* of the public rights streamflow condition?

Use *k*-means clustering on location and depletion potential to define management groups: 20 Groups

science for a changing world

The GWM (Groundwater Management) Tool for MODFLOW

Two main variables that can be adjusted:

1. Number of clusters in each management group

2. Maximum reduction of pumping allowed per group

The GWM (Groundwater Management) Tool for MODFLOW

Two main variables that can be adjusted:

1. Number of clusters in each management group

2. Maximum reduction of pumping allowed per group

Scenario	Total Pumping Reduction
All wells equal reduction	30%
Maximum reduction per well 35%	26%
Maximum reduction per well 100%	20%

GWM Results:

20 Clusters with non-irrigation separated out

