Manure Storage Design Opportunities

Jennifer L. Keuning, M.S.
Environmental Scientist
Conestoga-Rovers & Associates

Presentation Overview

- About CRA & CRA’s Agricultural Services
- Design Requirements
- Design of Manure Storage Facilities
 - Construction Materials
 - Capacity & Configuration
 - Cost comparison
 - Management & Maintenance
- Safety Considerations

About CRA

- Conestoga-Rovers & Associates (CRA)
 - Established in 1976, providing engineering, environmental, construction, and information technology (IT) services
 - Current workforce of over 3,000 people in 90 offices
 - Provided services on 1,000s of projects in over 60 countries
 - Completed over 250 projects on farms across North America, including designs of manure storage facilities
CRA’s Agricultural Services

- CRA’s Agricultural Experience
 - Manure Storage System Evaluations and Designs completed on: Dairy 100+; Beef 20+; Swine 10+; Poultry 10+
 - Storage types including: earthen, synthetic, and concrete lined ponds; concrete tanks & dry stacks
 - Bedding and manure separation systems
 - Gravity and pumped transfer systems
 - Leachate collection and treatment systems

Design Requirements

- Must meet NRCS CPS-313 Waste Storage Facility standard
 - Soil profile including bedrock and groundwater location
 - Setbacks to features such as property lines, wells, wetlands, etc.
 - Material being stored in the waste storage facility
 - Planned storage period
 - Intended management style including waste handling and transfer methods
 - Provisions for facility expansion
 - Potential odor concerns

Design Requirements – CAFOs

- Must meet additional requirements of NR243
- 180 days of containment for liquid
 - Manure
 - Bedding
 - Parlor wastewater
 - Leachate and collected runoff from feed storage
 - Wastewater from other sites from lots, barnyards
 - Normal precipitation less evaporation on the surface of the facility
 - Runoff volumes from the drainage areas
 - 25-year, 24-hour precipitation on the surface of the facility
 - 25-year, 24-hour runoff volume from the drainage area
 - Solids accumulation
 - Freeboard (1-foot)
Design Considerations

- **Construction Materials to Consider**
 - In-Place Earth Lagoons
 - Compacted Clay Lined Lagoons
 - Geomembrane Lined Lagoons
 - Geosynthetic Clay Lined Lagoons
 - Concrete Lined Lagoons
 - Glass Lined Steel Tanks
 - Concrete Tanks
 - Concrete Dry Stacks

Construction Materials

- **In-Place Earth Lagoons**
 - Limited to maximum of 20 ft operating depth
 - Requires consistent soils with greater than 40% fines and plasticity index greater than 12 for large lagoons
 - Requires top 1 ft of liner to be re-compacted
 - Requires 6 ft separation to saturation and bedrock
Construction Materials

Compacted Clay Lined Lagoons

- Can be >20 ft depth
- Requires soils with greater than 50% fines and plasticity index greater than 12
- 3 ft to 6 ft thick clay liner required based on depth
- Material must be over excavated and re-compacted
- Requires testing of liner material for compaction and permeability
- Requires at least 4 ft separation to saturation and bedrock, increasing with depth of lagoon
Construction Materials

- Geomembrane Lined Lagoons
 - 60 mil HDPE, LLDPE or EPDM material over secondary clay liner
 - Requires secondary clay liner of at least 2 ft thickness and greater than 40% fines
 - Requires 3rd party testing of liner material for material strength, seam strength & leakage
 - Requires greater than 4 ft separation to saturation and bedrock
Construction Materials

- **Geosynthetic Clay Lined Lagoons**
 - Bentonite material encased in geotextiles
 - Not very common in the area
 - Self-healing type of liner
 - Requires secondary clay liner of at least 2 ft thickness and greater than 20% fines
 - Requires liner cover material of 1 ft on the bottom and 2 ft on the sides
 - Requires greater than 4 ft separation to saturation and bedrock

- **Concrete Lined Lagoons**
 - Two types approved: concrete with waterstop & concrete-soil composite
 - Concrete with waterstop has no soil requirements and requires 2 ft separation to saturation and bedrock
 - Concrete-soil composite has 4 sub-criteria based on site conditions with minimum 3 ft separation to saturation and bedrock
Construction Materials

- **Manure Storage Tanks**
 - Constructed of concrete or steel
 - Concrete tanks can be partially below grade where steel tanks are all above grade
 - Waterstops at all joints for watertightness
 - Require 2 ft separation to saturation and bedrock

- **Solids stacking pads**
 - Constructed similar to concrete tanks with waterstop at all joints
 - Must contain 25-year, 24-hour storm event by sloping storage or collection system
 - Require 2 ft separation to saturation and bedrock
Design Considerations

Cost Comparison of Liners

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Approximate Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compacted Clay</td>
<td>$7.00 to $12.00 per yd²</td>
</tr>
<tr>
<td>60 mil HDPE</td>
<td>$0.70 to $1.30 per ft²</td>
</tr>
<tr>
<td>60 mil EPDM</td>
<td>$1.00 to $1.60 per ft²</td>
</tr>
<tr>
<td>GCL Liner</td>
<td>$1.00 to $1.50 per ft²</td>
</tr>
<tr>
<td>Concrete Liner</td>
<td>$2.50 to $4.50 per ft²</td>
</tr>
</tbody>
</table>

Cost vary greatly depending on location, design, size & complexity.
Design Considerations

- Locating a Manure Storage
 - Preliminary size storage facility based on production numbers to estimate general footprint
 - Identify potential location for manure storage
 - Verify all setbacks from sensitive features
 - Identify soil conditions in proposed area
 - Start selection of liner type:
 - What management practices will be used?
 - Will sand bedding be used?
 - How will accumulated solids be removed?
 - Are site conditions suitable for this type of liner?
 - Will the design allow for future expansion?
 - What are the construction and maintenance costs?
 - Select liner and complete design

- Additional Considerations
 - Additional storage capacity especially if using a flush flume system
 - Multiple smaller storages to allow better management and increased safety
 - Plan for growth of the farm when locating and sizing manure storages
 - Agitation techniques when choosing depth and size of manure storages
 - How wastewater will get to the facility and how it will be removed?
 - Predominant wind direction and odor potential
 - Where solids will settle in the storage system
Design Considerations

- Cover Systems
 - Cover systems can be installed on all types of lagoons and tanks to reduce odor
 - Constructed typically of HDPE with drainage channels and floats
 - Requires rain water to be pumped off using pumps on the cover system
 - Gas is collected under the cover and can be flared, sent through a biofilter or tied into a digester system
Safety Considerations

- Emergency Response Plan
- Maintenance of liner and berms
- Rails and fencing
 - Exclusion of people, animals, and equipment
- Confinement areas
 - Buildup of hazardous gases
Summary

- Design Standards
- Design of Manure Storage Facilities
 - Construction Materials
 - Capacity & Configuration
 - Cost comparison
 - Management & Maintenance
- Safety Considerations

Questions/Comments

Jennifer Keuning, M.A.Sc.
Conestoga-Rovers & Associates
jkeuning@craworld.com
Tel: (920) 490-1663
Fax: (920) 490-1668