Best Management Practices for Reducing Odor & Emissions on Midwest Dairies

Rick Stowell, P.E., Ph.D.
University of Nebraska-Lincoln
rstowell2@unl.edu

Air Quality Issues for Dairies

- Odor
 - A real concern for most producers
- Ammonia
 - An imminent concern for many producers
- Greenhouse gases (GHG)
 - A growing concern / opportunity for some producers
- Other gases and dust
 - A potential concern for a few producers

Why manage odor?

Today's realities:

- Every dairy produces odor
 - Smells like? How often? For whom? ??
- Odors may evoke complaints and complaints can be bad news for business
 - Communication divide with neighbors
 - Draw unwanted attention and scrutiny
 - Potential for litigation
 - Distraction for management of dairy

Why manage ammonia (NH₃) emissions?

- Growing environmental concern
 - Chesapeake Bay, nutrient loading
 - Reactive N, fine particulates (PM₂.₅)
- Expanding reach of regulations
 - Enforcement of EPCRA reporting
 - Role of Clean Air Act??
- Significant loss of nitrogen
 - Fertilizer value
Concern about Reactive N

While air consists of mostly N₂ gas, other forms of N in the atmosphere (e.g. NO, NO₂, N₂O) are being assigned negative environmental impacts.

Example:
- Health studies have shown a significant association between exposure to fine particles and premature death from heart or lung disease.
- PM is a regulated criteria pollutant
- NH₄NO₃ is a common fine particulate in agro-industrial areas
- NOₓ (nitrogen oxides) is a regulated criteria pollutant. Power plants, automobiles, and other combustion sources emit NOₓ.
- Farms emit ammonia (NH₃), a PM₂.₅ 'precursor'.

Source: www.epa.gov

Why manage GHG emissions?
Dealing with misperception & uncertainty

<table>
<thead>
<tr>
<th>Issue</th>
<th>Perception or feared outcome</th>
<th>Reality now or likely outcome</th>
</tr>
</thead>
</table>
| Regulation of Ag emissions | • EPA regulation via CAA
• New state policy (e.g. CA)
• Congress pass a 'cow tax' | • EPA reporting rule on books for >3,200 cows
• Lack legislative support |
| Consumer demand & milk market | • 'Green' consumers want low-carbon-footprint food
• Barrier for market growth | • Lag in willingness to pay (consumer & retailer)
• Niche → market-wide |
| Methane capture and market | • Profit from carbon credits or producing bioenergy
• Digesters will be required | • No/poor U.S. market for carbon credits / biogas
• Digesters in select cases |
| Role of U.S. Animal Ag | • Leading GHG emitter
• Bear large burden of reducing emissions | • Relatively minor source of U.S. GHG emissions
• A model for efficiency |

Why manage GHG emissions?
What will drive markets and policy?

Source: EPA GHG Inventory, 2008
Results after BMPs for Odor

<table>
<thead>
<tr>
<th>Management Category</th>
<th>Odor</th>
<th>Particulate Matter (OM)</th>
<th>Ammonia (NH3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities and Routing</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Feeding and Handling</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Collection and Transfer</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Western Storage</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Land Application</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>On Farm Roads</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Perceptions</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Manure Injection

Can conserve 90% of N value

- **Tank wagon**
 - (1,500–10,000 gal)
 - How fast can/must manure be applied?
 - More compaction, but tillage benefits
 - ↓ Odor, ↓ NH3, ↓ H2S
 - Also reduces runoff

- **Hose-drag injector**
 - (900,000 gal/day)
 - Minimize throwing and splashing

Priority #1 - Land Application

- **Odor hot button**
 - Strong eye-nose-brain connection
 - Acute, intense emissions
 - Proximity concerns
 - Perceived lack of control
- **Gas emission spike**
 - NH3 loss

Manure Incorporation

Effective emissions reduction when done promptly (< 24 hours)

(WDNR NR 243, <48 hr)

Land Application AQ BMP

- **Get it below**
- **Keep it low**
- **Think about how the wind will blow**
- **Manage how your neighbors know**

Subsurface Agitation

Minimize throwing and splashing

- **Do**
- **Don’t**

Photos by: C. Fulhage
Keep a Low Profile

Less drift and attention
• Maximize droplet size
 – Large nozzles
 – Low pressures
• Control spray distance
 – Little or no upward spray
• Spray within the canopy or close to the ground
 ↓ Odor, ↓ NH₃, - H₂S, ↓ Drift

Dairy Facilities

• Baseline emission sources (24-7-365)
 – Source of chronic odor complaints
 – Regulatory control and action most likely
• Dairy herd management tends to:
 – Limit cattle areas as odor emission sources
 – Shift emissions to manure storage & handling

How the wind blows...

• Monitor weather forecast
 – Esp. wind direction and speed
 – Who / what is likely downwind of application area?
• Avoid calm days and dusk/dawn application for manure application
 – Odor plume stays concentrated and near the ground
• Avoid windy days for irrigation
 – Don’t irrigate if wind >10 mph

Feed Mgt. - Balance Rations

• Overfeeding protein → NH₃ emissions
 – Use multiple rations
 – Test feeds regularly
 – Balance for metabolizable protein
 – Manage byproduct use (distillers grains, etc.)

How do neighbors know?

• Communicate with them ahead of time
 – Convey appreciation of their interests
 • Neighbor activities?
 – Convey your efforts to minimize impacts
• Limit sensory effects
 – Property line windbreaks (vegetative buffers)
 • Visual and olfactory benefits
 – Limit use of public roads and tracking
 – Turn off or remove end-guns on pivots

Feed Management

• Manage feed for less shrink and wastage
 – Good cover and seal
 – Manage bunker face [exposure]
• Manage feed bunks and water tanks
 – Clean bunks and tanks regularly
 – Limit unintended wetting of feed
 – Limit water spillage / promptly fix leaks
Barn Practices

- BMP for odor and gases are same as for cow cleanliness and mastitis control
 - Clean
 - Dry
 - Comfortable

Storage BMP – Liquid Manure

- Maintain/enhance solids removal
 - Maintain mechanical separators
 - Clean out settling basins regularly
 - Clean out storage basins fully
 - Manage manure treatment system

 OR

- Maintain crust as natural cover

Manure Collection

- Consider effects of cleaning frequency
 - Scrape systems
 - More often is better for odor
 - Less often may be better for ammonia emissions
 - Flush systems
 - More often is generally better
 - Depends upon quality of flush water (burst emissions)

- Maintain cleaning effectiveness

Storage BMP – Solid Manure

- Limit moisture addition (keep high & dry)
- Helps control odor, ammonia loss & flies
 - Divert clean runoff
 - Divert precipitation
 - Drain off seepage

- Partial compost
 - Benefit for odor control
 - May increase NH3 loss

Manure Transfer to Storage

- Load into storage below surface
- Use closed pipe or conduit

Minimize exposure to air [and eyes]

Summary

- Odor and ammonia emissions likely key
- Land application can invite trouble
 - Immediate incorporation ➔ less emissions
 - Don’t ignore the power of communication and perception
- Facility emissions may become challenge
 - Reducing emissions probably means managing manure better or differently
 - Managing manure emissions may entail inconvenience, cost, complexity, etc.