

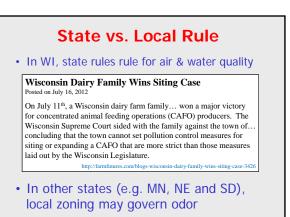
Rick Stowell, P.E., Ph.D. University of Nebraska-Lincoln rstowell2@unl.edu

Siting of Dairy Facilities

Question: Is odor is the main practical air quality concern for a dairy farm?

Response: If yes, then address that concern.


- Odor is:
 - Challenging to control
 - A local/neighbor issue
 - Especially problematic for new facilities
- A big part of the solution:
 - Manage what is local and who are neighbors


Siting for Reduced Odor Risk: Planning Tools

- Advance planning may be required
 - State rule
 - County or township ordinance
- Advance planning is beneficial
 - Identify concerns
 - Identify siting options
 - Assess potential of mitigation strategies
 - Possible plus for getting approval

Standard	Applies to	Requirements
Animal Units (AU)	All applicants	Calculate number of animal units
Odor Management	Required only of applicants* within 2500 feet of their nearest neighbor that are New farms over 500 AU Expanding farms over 1000 AU * Farmer farm severation correlate and nome	Predict odor from facility structures based on structure types, odor control practices used and distance to neighbors Achieve required odor score Local discretion to award extra points

Dairy Siting Dilemmas

- Contradictory rural community acceptance
 - Livestock expansion is often accepted where capacity is pressed and opposed where it may be most beneficial

- Response to odor varies
 - Sensitivity
 - Offensiveness

While 'minimum separation' may be prescribed, 'acceptable' separation is relative to the recipient.

Use Available Planning Tools

- · Actively address local environment
- · Good way to mitigate 'odor problem'
- Options:
 - OFFSET
 - http://www.extension.umn.edu/distribution/livestocksystems/D17680.html
 - WI Odor Standard (derived from OFFSET) http://datcp.wi.gov/uploads/Environment/pdf/Worksheet_2.pdf
 - Odor Footprint Tools (offspring of OFFSET)
 - NOFT http://water.unl.edu/web/manure/odor-footprint-tool
 - SDOFT www.sdstate.edu/abe/research/structures/upload/SDOFT.pdf
 - Multi-Source Odor Setback Model https://engineering.purdue.edu/~odor/setback.htm

Air Pollution Control Points

- Prevent generation
- Capture or destroy before releasing to the atmosphere
- Disperse or disguise to mitigate impact

Reducing Generation: Dietary Manipulation

- Balance ration (a BMP)
 Limit excess protein → Limit NH₃ emissions
- Monensin → Improved feed efficiency
 Anticipate that less manure → less methane
- Variety of products and claims
 - Evidence for odor reduction?

and possibly less odor

Primary effects and cost?

Reducing Generation: Solids Separation and Reduction Objective: Remove volatile organics and nutrients • Mechanical separation alone → ~30% Max. reduction • Challenge is removing dissolved solids • Study by Harrison and Whitefield, 2012 • Polymer addition (e.g. ferric chloride) can substantially improve solids reduction

- Coagulant usage can become extensive and expensive

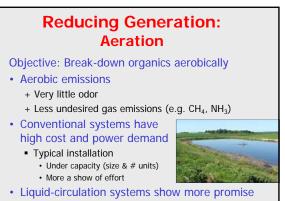
Reducing Generation: Anaerobic Digester

Objective: Break down organic matter → biogas

- Digester effluent has:
 - + Less odor-generating potential (60 to 80% reduction)
 - + Greenhouse gas reduction $CH_4 \rightarrow CO_2$
 - Higher NH_4 content \rightarrow higher potential ammonia loss
- Digester biogas contains hydrogen sulfide
 Odor from leaks in cover or S-removal process?

Reducing Generation: Wastewater treatment

Objective: Break down solids wo/odor emissions


- Low-tech: Treatment lagoons
 - + Less odorous than storage basin
 - Larger facility and management required
 - Less effective in cold climates

- High NH₃ and N losses

- High-tech: Municipal treatment systems

- Seasonal odor bursts (spring turnover)

- + Can clean-up wastewater w/little odor
- Manure requires pre-treatment for solids reduction
- Large capital and operating cost

- Treatment must be continual

Reducing Generation: Manure Additives

Objective: Alter bioactivity for reduced emissions

- Have often underachieved
 - Limited effectiveness
 - Costly to implement over time
 - Side effects (e.g. pH swings)

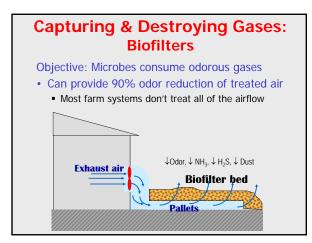
· May enhance solids breakdown

- + Easier manure handling
- + Longer-term emission benefits
- May be effective for certain circumstances
 - + Producer testimonials
 - + May have limited initial/trial investment cost

- Management concerns [vs. stock-piling]
 - Additional equipment and labor needs
 - + Significant volume reduction
 - + Greater acceptance / market potential

Capturing & Destroying Gases: Permeable Covers

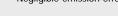
Objective: Reduce emission rate of odor


- Slow air exchange at manure surface
- · Break down gases within cover media
- Can provide >50% odor reduction
- Biocovers (thick straw layer)
 - + Low capital cost
 - Maintenance issues and cost
- Geotextile covers
 - Higher up-front costDurability has improved

Capturing & Destroying Gases: Impermeable Covers

Objective: Seal off surface to eliminate emissions

- Can provide 90% odor reduction
- Gas buildup
 - Typically flared
 - May be combusted for heat or power supply [covered-lagoon digester]
- High initial cost
- Maintenance needs
 - Pumping out
 - Repairs



Mitigating Impact of Emissions: Vegetative Environmental Buffers

Objective: Divert and dilute odorous air

- Vertical barriers deflect and help disperse odors
 - Not suited to dairy barnsHeight & fan limitations
 - Negligible emission effect

- VEB use trees for windbreak and filtering
 - Natural windbreakShelterbelt

Mitigating Impact of Emissions: Vegetative Environmental Buffers

- Environmental benefits
 - Many people like them (natural, scenic)
 - Visual barrier
 - Modest emissions effect (10-20% reductions)
- Management issues
 - Windbreak effects on ventilation
 - Take time to establish
 - Require some care and management
 - Greatest benefit within wind shadow
 - Place downwind of source or upwind of recipients?

Summary

- Good siting of facilities can alleviate many potential odor challenges
 - Understand your locale
 - Use available planning tools
- Technologies exist for mitigating emissions
 - What is needed: emission reduction or addressing concerns of a few residents?
 - All have costs and management concerns
 - Consider expected benefits and costs

