Fitting Cover Crops in Corn Silage Systems

Dean G. Baas Dale R. Mutch Todd E. Martin

Crop and Soil Sciences W.K. Kellogg Biological Station Michigan State University Extension

Why Use Cover Crops?

Cover Crops

er ps Soil organic matter

Water Quality

Erosion

control

Soil

fertility

Soil biota

Diseases

Nematodes

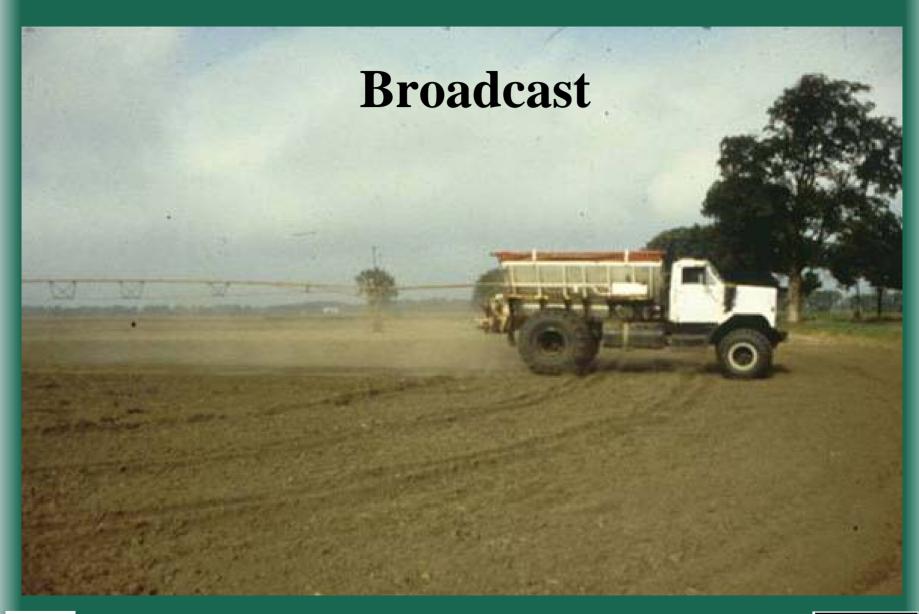
Weeds

Insects

Cover Crop Seeding

 \succ Frost seeding \triangleright Over seeding **Broadcast** > Drill \blacktriangleright Aerial seeding Manure Slurry Seeding Brillon Seeder

Frost seeding

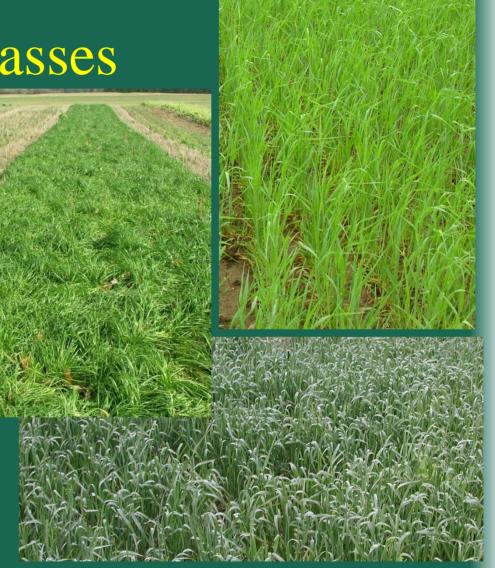


Drill (no-till)

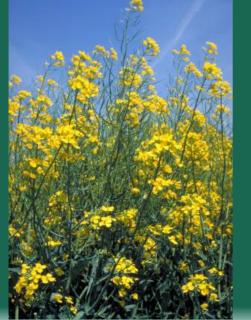
Aerial Seeding

Manure slurry seeding

Legumes


Crimson Clover Mammoth Red Clover **Medium Red Clover** Sweet Clover White Clover Hairy Vetch Alfalfa Cowpea **Austrian Winter Pea**

Annual Ryegrass Barley Oats Cereal Rye Triticale Winter Wheat Sorghum/Sudan grass



Broadleaf (non-legumes)

Buckwheat
Oilseed Radish
Rape/Turnip
Oriental Mustard

NORTH CENTR

Cover Crop Research at KBS **Covers Following Winter Wheat** >Wheat harvested >No-till covers \triangleright Plot size: 20 feet X 125 feet Biomass late fall before frost

Cover Crop Research at KBS Covers Following Winter Wheat \sim Crimson Clover – 15 lbs/A > Hairy Vetch – 30 lbs/A ≻Oilseed Radish – 15 lbs/A > Soybeans – 1 bu/A ➢ Control

Crimson Clover Covers following winter wheat 1999 - KBS

Elairy Vetch Covers following winter wheat 1999 - KBS

Oilseed Radish Covers following winter wheat 1999 - KBS

Soybeans Covers following winter wheat 1999-KBS

Control Covers following winter wheat 1999 - KBS

Cover Crop Research at KBS 1999 Fall Biomass

	Cover		Weeds	
Treatment	lbs/A	LSD	lbs/A	LSD
Oilseed radish	2943	А	44	В
Hairy vetch	2644	А	157	В
Crimson clover	1917	В	349	В
Soybeans	808	С	442	В
Control	0	D	2483	<u>A</u>
LSD@0.05	657		575	

Cover Crop Research at KBS 2000 Spring Biomass

	Cover		Weeds	
Treatment	lbs/A	LSD	lbs/A	LSD
Oilseed radish	0	С	113	С
Hairy vetch	5199	А	0	С
Crimson clover	2963	В	38	С
Soybeans	0	С	322	В
Control	0	С	728	<u>A</u>
LSD@0.05	657		575	

Cover Crop Research at KBS 2000 PSNT N Credits

Treatment	lbs/A	LSD
Hairy vetch	101	А
Crimson clover	67	В
Oilseed radish	37	С
Control	20	С
Soybeans	20	<u> </u>
LSD@0.05	25	

Cover Crop Research at KBS 2000 Corn Yield

Cover	lbs N	bu/A	LSD
Oilseed Radish	120	185	А
Hairy Vetch	120	182	AB
Hairy Vetch	0	174	ABC
Hairy Vetch	60	173	ABC
control	120	169	ABCD
Crimson Clover	60	165	ABCDE
Oilseed Radish	60	165	ABCDE
Crimson Clover	0	164	ABCDE
Crimson Clover	120	162	BCDE
Soybeans	120	155	CDE
Soybeans	60	150	DE
control	60	149	DE
Oilseed Radish	0	148	E
control	0	118	
<u>Soybeans</u>	0	117	
LSD@0.05		21	

F

F

Cover Crop Research at KBS 2000 Stalk Nitrate

Cover	<u>Ibs/A N</u>	ppm N	LSD
Hairy Vetch	60	7354	А
Hairy Vatch	120	6238	AB
ⁿ Crimson Clov	120	4923	BC
Hairy Vetch	0	3572	CD
Oilseed Rad	120	2503	DE
Crimson Clov	60	2501	DE
Oilseed Rad	60	786	EF
control	120	725	F
Soybeans	120	449	F

Stalk N too low

Question: This is optimum for grain, is there a desirable stalk nitrate level for silage?

Cover Crops Seeded into Several Michigan Cropping Systems

Cover Crops Seeded into Seed CornTurnip + RapeSept. 15, 1999

Cover Crops Seeded into Seed CornCow PeasSept. 15, 1999

Cover Crops Seeded into Seed Corn Austrian Winter Peas

Cover Crops Seeded Following Snap Beans Oilseed Radish Nov. 19, 1999

Cover Crops Seeded Following Snap Beans Oats Sept. 24, 1998

Crimson Clover Seeded Following Winter Wheat

Fall Seeded Hairy Vetch

Oriental Mustard Seeded Following Winter Wheat

Annual Ryegrass Seeded Following Winter Wheat

Seeding Cover Crops with Manure Slurries

Tim Harrigan Biosystems and Agricultural Engineering

Dale Mutch and Sieglinde Snapp Kellogg Biological Station Michigan State University

Enhance soil biology with organic inputs-manure and cover crops

➢ Increase

- » organic matter
- » water holding capacity

> Improve

- » aggregate stability
- » water infiltration

> Decrease

- » evaporation
- » soil bulk density

Manure with a cover crop

Greater yield response to manure applied with a winter cover crop than manure on bare soil.

Goal

Develop an integrated process that incorporates

- » low-disturbance tillage
- » manure application
- » and seeding of cover crops
- in one efficient operation

Manure slurry-enriched seeding of cover crops

Seed placement and emergence

- Aeration tillage creates cracks and fissures that are filled with seed-laden slurry.
 - » Emergence from near surface to 3 inches.

Treatments

Cover Crop	Rate	
Annual Ryegrass	35 lbs	
Cereal rye	2 bu	
Crimson clover	15 lbs	
Oilseed radish	15 lbs	
Oriental mustard	10 lbs	
Control		

Oriental Mustard Seeded With Manure

Oriental Mustard No-till Drilled

1

Oriental Mustard Manure - 10 plants

Oriental Mustard No-till - 35 plants

Oilseed Radish Seeded With Manure

Oilseed Radish

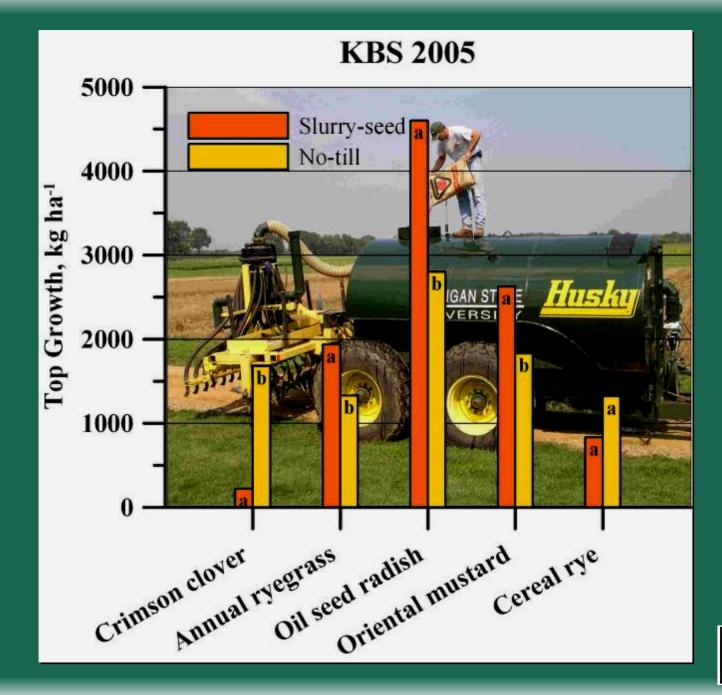
Annual Ryegrass Seeded With Manure

Annual Ryegrass No-till Drilled

Cereal Rye Seeded with Manure

Crimson Clover Seeded with Manure

Crimson Clover No-till Drilled



No Cover Crop Manure Application

No Cover Crop No-till Drilled

Corn Yields

trt	Manure/cover crop	PSNT credit (lb/a)	yield	LSD
1	Manure/Crimson Clover	50	159	AB
2	Manure/Annual Ryegrass	55	157	AB
3	Manure/Oilseed Radish	70	167	A
4	Manure/Oriental Mustard/Cereal	55	155	ABC
5	Manure/Cereal Rye	40	162	AB
6	Manure	55	155	ABC
7	No Manure	40	157	AB
8	No Manure/Crimson Clover	105	137	D
9	No Manure/Annual Ryegrass	40	149	BCD
10	No Manure/Oilseed Radish	60	147	BCD
11	No Manure/Oriental Mustard/Cereal	60	139	CD
12	No Manure/Cereal Rye	55	147	BCD
			LSD @ 0.05 = 17	

(All plots fertilized to 120 lb-N/a)

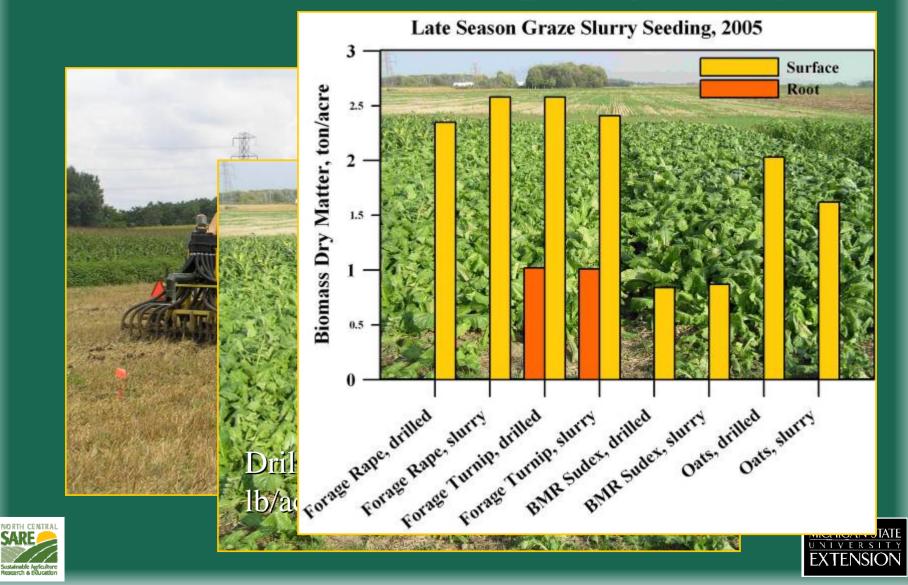
Small grain cover after corn silage

Suitable for several crops

Annual rye grass

Pasture improvement

Pasture im



Frost Seed RC

Late season/stockpile grazing

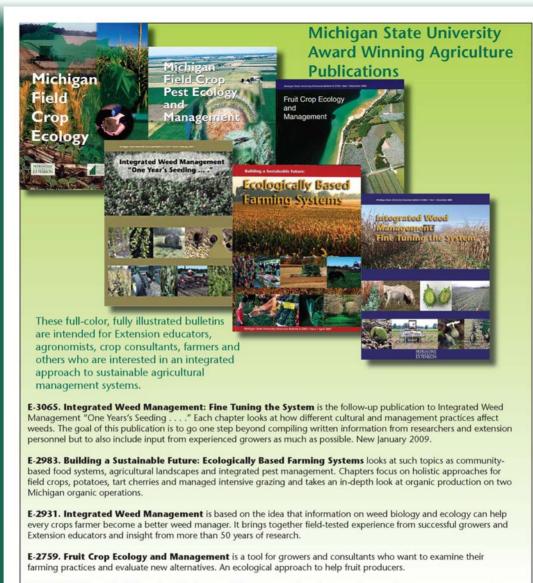
Slurry-enriched seeding is environmentally sensitive

Environmental benefits

- » Conserves crop residue and improves infiltration, reduces over land flow.
- » Stabilize soil and contaminants, recycles nutrients.

Crop protection

- » Natural pest suppression, reduction in pesticides.
- Soil quality benefits
 - » Reduce tillage and traffic, organic inputs, sequester carbon, increase soil organic matter.


Resource efficiency

» Aeration tillage, manure application and cover crop seeding in one pass. Saves 2 gal/acre fuel, 0.35 h/acre labor.

E-2704. Michigan Field Crop Pest Ecology and Management is an integrated approach to pest management. Crop rotation, tillage practices variety selection and chemical and non-chemical practices are some of the topics covered. Case studies based on three Michigan farms are used to illustrate the concepts presented throughout the publication.

E-2646. Michigan Field Crop Ecology was the first publication of this pioneering series. To change to more sustainable agricultural systems, it is important to first understand the ecological components of these systems. Knowing how to manage soil ecology, nutrients, pest management, crop rotations and other aspects of the farm system can help producers reap rewards for years to come.

To order, contact the MSU Bulletin Office at 517-353-6740 or visit the web: http://web2.msue.msu.edu/bulletins/subjectsearch.cfm.

W.K. Kellogg Biological Station MSUExtension Land & Water Unit

- www.mccc.msu.edu
- www.new-ag.msu.edu
- ➢ 800 521-2619 x 224

Thanks!

